The physics goal of the strong interaction program of the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) is to study the phase diagram of hadronic matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents differential inclusive spectra of transverse momentum, transverse mass and rapidity of $\pi^{-}$ mesons produced in $central$ ${}^{40}$Ar+${}^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$ GeV/$c$. Energy and system size dependence of parameters of these distributions -- mean transverse mass, the inverse slope parameter of transverse mass spectra, width of the rapidity distribution and mean multiplicity -- are presented and discussed. Furthermore, the dependence of the ratio of the mean number of produced pions to the mean number of wounded nucleons on the collision energy was derived. The results are compared to predictions of several models.
Uncorrected double-differential spectra n[h−]raw/dy/dpT of negatively charged hadrons produced in the 5% Ar+Sc collisions with the smallest EPSD energy at beam momenta of 13A, 19A, 30A, 40A, 75A and 150A GeV/c
Uncorrected double-differential spectra n[h−]raw/dy/dpT of negatively charged hadrons produced in the 5% Ar+Sc collisions with the smallest EPSD energy at beam momenta of 13A, 19A, 30A, 40A, 75A and 150A GeV/c
Uncorrected double-differential spectra n[h−]raw/dy/dpT of negatively charged hadrons produced in the 5% Ar+Sc collisions with the smallest EPSD energy at beam momenta of 13A, 19A, 30A, 40A, 75A and 150A GeV/c
Strong interactions preserve an approximate isospin symmetry between up ($u$) and down ($d$) quarks, part of the more general flavor symmetry. In the case of $K$ meson production, if this isospin symmetry were exact, it would result in equal numbers of charged ($K^+$ and $K^-$) and neutral ($K^0$ and $\overline K^{\,0}$) mesons in the final state. Here, we report results on the relative abundance of charged over neutral $K$ meson production in argon and scandium nuclei collisions at a center-of-mass energy of 11.9 GeV per nucleon pair. We find that the production of $K^+$ and $K^-$ mesons at mid-rapidity is $(18.4\pm 6.1)\%$ higher than that of the neutral $K$ mesons. Although with large uncertainties, earlier data on nucleus-nucleus collisions in the collision center-of-mass energy range $2.6 < \sqrt{s_{NN}} < 200$~\GeV are consistent with the present result. Using well-established models for hadron production, we demonstrate that known isospin-symmetry breaking effects and the initial nuclei containing more neutrons than protons lead only to a small (few percent) deviation of the charged-to-neutral kaon ratio from unity at high energies. Thus, they cannot explain the measurements. The significance of the flavor-symmetry violation beyond the known effects is 4.7$\sigma$ when the compilation of world data with uncertainties quoted by the experiments is used. New systematic, high-precision measurements and theoretical efforts are needed to establish the origin of the observed large isospin-symmetry breaking.
Numerical data for $K^0_S$ from Figure 1.
Numerical data for $K^0_S$ from Figure 1.
Numerical data for $(K^+ + K^-)/2$ from Figure 1.
The production cross section of 30.92 GeV/$c$ protons on carbon is measured by the NA61/SHINE spectrometer at the CERN SPS by means of beam attenuation in a copy (replica) of the 90-cm-long target of the T2K neutrino oscillation experiment. The employed method for direct production cross-section estimation minimizes model corrections for elastic and quasi-elastic interactions. The obtained production cross section is $\sigma_\mathrm{prod}~=~227.6~\pm~0.8\mathrm{(stat)}~_{-~3.2}^{+~1.9}\mathrm{(sys)}~{-~0.8}\mathrm{(mod)}$ mb. It is in agreement with previous NA61/SHINE results obtained with a thin carbon target, while providing improved precision with a total fractional uncertainty of less than 2$\%$. This direct measurement is performed to reduce the uncertainty on the T2K neutrino flux prediction associated with the re-weighting of the interaction rate of neutrino-yielding hadrons.
Production cross section in p+C interactions at different incident beam momenta.
In 2015 the PHENIX collaboration at the Relativistic Heavy Ion Collider recorded $p+p$, $p+$Al, and $p+$Au collision data at center of mass energies of $\sqrt{s_{_{NN}}}=200$ GeV with the proton beam(s) transversely polarized. At very forward rapidities $\eta>6.8$ relative to the polarized proton beam, neutrons were detected either inclusively or in (anti)correlation with detector activity related to hard collisions. The resulting single spin asymmetries, that were previously reported, have now been extracted as a function of the transverse momentum of the neutron as well as its longitudinal momentum fraction $x_F$. The explicit kinematic dependence, combined with the correlation information allows for a closer look at the interplay of different mechanisms suggested to describe these asymmetries, such as hadronic interactions or electromagnetic interactions in ultra-peripheral collisions, UPC. Events that are correlated with a hard collision indeed display a mostly negative asymmetry that increases in magnitude as a function of transverse momentum with only little dependence on $x_F$. In contrast, events that are not likely to have emerged from a hard collision display positive asymmetries for the nuclear collisions with a kinematic dependence that resembles that of a UPC based model. Because the UPC interaction depends strongly on the charge of the nucleus, those effects are very small for $p+p$ collisions, moderate for $p+$Al collisions, and large for $p+$Au collisions.
Measured forward neutron single spin asymmetries in p+p collisions as a function of pT in bins of xF
Measured forward neutron single spin asymmetries in p+Al collisions as a function of pT in bins of xF
Measured forward neutron single spin asymmetries in p+Au collisions as a function of pT in bins of xF
Transverse momentum spectra of electrons from Au+Au collisions at sqrt(s_NN) = 130 GeV have been measured by the PHENIX experiment at RHIC. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semi-leptonic decays of charm. The yield of the electron signal dN_e/dy for p_T > 0.8 GeV/c is 0.025 +/- 0.004 (stat.) +/- 0.010 (sys.) in central collisions, and the corresponding charm cross section is 380 +/- 60 (stat.) +/- 200 (sys.) micro barns per binary nucleon-nucleon collision.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. The upper limit for 1.9 GeV/$c$ is 4.10224e-05.
We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.
Transverse momentum spectra of $\Lambda$ and $\bar{\Lambda}$ for minimum-bias and for the $5\%$ most central events.
The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of $p_T$.
The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of the number of participants.
In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.
Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding
Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding
Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding
The production of deuterons and antideuterons in the transverse momentum range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis comparing the deuteron and antideuteron spectra with those of protons and antiprotons, has been performed. The coalescence probability is equal for both deuterons and antideuterons and increases as a function of p_T, which is consistent with an expanding collision zone. Comparing (anti)proton yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/- 0.03, we estimate that n_bar/n = 0.64 +/- 0.04.
Corrected spectra for deuterons and anti-deuterons for different centralities are plotted vs $m_T$.
Corrected spectra for deuterons and anti-deuterons for different centralities are plotted vs $m_T$.
Coalescence parameter $B_2$ vs $p_T$ for deuterons (left panel) and anti-deuterons (right panel). Grey bands indicate the systematic errors. Values are plotted at the "true" mean value of $p_T$ of each bin, the extent of which is indicated by the width of the grey bars along x-axis.
New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.
Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method
Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.
Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.