Date

Elliptic flow of identified hadrons in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 182301, 2003.
Inspire Record 619061 DOI 10.17182/hepdata.141613

The anisotropy parameter v_2, the second harmonic of the azimuthal particles distribution, has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV for identified and inclusive charged particles at central rapidities (|eta| < 0.35) with respect to the reaction plane defined at high rapidities (|eta| = 3-4). The v_2 for all particles reaches a maximum at mid-centrality, and increases with p_T up to 2 GeV/c and then saturates or decreases slightly. Our results depart from hydrodynamically predicted behavior above 2 GeV/c. A quark coalescence model is also investigated.

33 data tables

Correlation of reaction planes between two beam counters for the second moment is shown as a function of centrality.

The value of $v_2$ for charged particles is shown as a function of centrality (middle) and as a function of $p_T$ (right).

The value of $v_2$ for charged particles is shown as a function of transverse momentum, $p_T$.

More…

Mid-rapidity neutral pion production in proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 241803, 2003.
Inspire Record 617784 DOI 10.17182/hepdata.41956

The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.

1 data table

The invariant differential cross section as a function of PT. The mean PT here is defined as the PT for which the cross section equals its average over thebin.


Suppressed pi0 production at large transverse momentum in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072301, 2003.
Inspire Record 617814 DOI 10.17182/hepdata.143254

Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.

26 data tables

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

More…

V0, anti-Xi+ and Omega- inclusive production cross-sections measured in hyperon experiment WA89 at CERN

The WA89 collaboration Adamovich, M.I. ; Aleksandrov, Yu.A. ; Baranov, S.P. ; et al.
Eur.Phys.J.C 26 (2003) 357-370, 2003.
Inspire Record 614087 DOI 10.17182/hepdata.43217

We report on a measurement of the inclusive cross sections of $\Lambda$ , $\overline\Lambda$ , K 0

28 data tables

Total inclusive hyperon production cross sections for the SIGMA- beam on the Copper target.

Total inclusive hyperon production cross sections for the SIGMA- beam on the Carbon target.

Total inclusive hyperon production cross sections per nucleon for the SIGMA- beam, and the exponent in the cross section parametrization of the form A**POWER.

More…

Narrowing of the balance function with centrality in Au + Au collisions s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 90 (2003) 172301, 2003.
Inspire Record 612248 DOI 10.17182/hepdata.98620

The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.

6 data tables

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The width of the balance function for charged particles, $⟨\Delta \eta⟩$, as a function of normalized impact parameter $(b/b_{max})$. Error bars shown are statistical. The width of the balance function from HIJING events is shown as a band whose height reflects the statistical uncertainty. Also shown are the widths from the shuffled pseudorapidity events.

More…

Strange anti-particle to particle ratios at mid-rapidity in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The STAR collaboration Adams, John ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Lett.B 567 (2003) 167-174, 2003.
Inspire Record 602867 DOI 10.17182/hepdata.98924

Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71 +/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05 (sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092 +/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au collisions using the STAR detector. The ratios indicate that a fraction of the net-baryon number from the initial system is present in the excess of hyperons over anti-hyperons at mid-rapidity. The trend in the progression of the baryon ratios, with increasing strange quark content, is similar to that observed in heavy-ion collisions at lower energies. The value of these ratios may be related to the charged kaon ratio in the framework of simple quark-counting and thermal models.

5 data tables

Invariant mass distributions for $\Lambda$ and Anti-$\Lambda$

Invariant mass distributions for $\Xi$ and Anti-$\Xi$

Invariant mass distributions for $\Omega$ and Anti-$\Omega$

More…

Disappearance of back-to-back high p(T) hadron correlations in central Au+Au collisions at s(NN)**(1/2) = 200-GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 90 (2003) 082302, 2003.
Inspire Record 600652 DOI 10.17182/hepdata.101748

Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.

9 data tables

Azimuthal distributions of opposite-sign pairs in p+p collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

Azimuthal distributions of same-sign pairs in p+p collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

Azimuthal distributions of same-sign and opposite-sign pairs in minimum bias and background-subtracted 0-10% central Au+Au collisions. All correlation functions require a trigger particle with $4<p_T^{\rm trig}<6$ GeV/$c$ and associated particles with $2<p_T<p_T^{\rm trig}$ GeV/$c$.

More…

t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 67 (2003) 012004, 2003.
Inspire Record 586609 DOI 10.17182/hepdata.54899

Results are presented on a measurement of the ttbar pair production cross section in ppbar collisions at sqrt{s} = 1.8 TeV from nine independent decay channels. The data were collected by the Dzero experiment during the 1992-1996 run of the Fermilab Tevatron Collider. A total of 80 candidate events are observed with an expected background of 38.8 +- 3.3 events. For a top quark mass of 172.1 GeV/c^2, the measured cross section is 5.69 +- 1.21 (stat) +- 1.04 (sys) pb.

1 data table

Measured top quark pair production cross section in the different channels and the various averages, including the overall average.


Centrality dependence of the high p(T) charged hadron suppression in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, Stephen Scott ; Ajitanand, N.N. ; et al.
Phys.Lett.B 561 (2003) 82-92, 2003.
Inspire Record 590820 DOI 10.17182/hepdata.141648

PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.

6 data tables

Number of participants and binary collisions and their systematic errors for the individual centrality selections used in this analysis. Also given is the ratio of the number of binary collisions for the most central sample relative to the one for each sample. The last column quantifies the ratio of binary collisions to participant pairs.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the centrality dependence of $p/h$ for $p_T >$ 1.8 GeV/$c$.

More…

Coherent rho0 production in ultra-peripheral heavy ion collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 272302, 2002.
Inspire Record 588142 DOI 10.17182/hepdata.102319

The STAR collaboration reports the first observation of exclusive rho^0 photo-production, AuAu->AuAu rho^0, and rho^0 production accompanied by mutual nuclear Coulomb excitation, AuAu->Au*Au*rho^0, in ultra-peripheral heavy-ion collisions. The rho^0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt(s_NN)=130GeV agree with theoretical predictions treating rho^0 production and Coulomb excitation as independent processes.

3 data tables

Differential cross section $d\sigma(\gamma Au \rightarrow \rho Au)/dt$ of $\rho^0$ candidates

Differential cross section $d\sigma/dM_{\pi\pi}$ for two-track (xn,xn) events with pair $p_T<150$ MeV/$c$

Total background in the differential cross section $d\sigma/dM_{\pi\pi}$