Search for $CP$ violation in events with top quarks and Z bosons at $\sqrt{s}$ = 13 and 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
Phys.Lett.B 869 (2025) 139857, 2025.
Inspire Record 2925585 DOI 10.17182/hepdata.157847

A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.

0 data tables match query

Inclusive and differential measurements of the $\mathrm{t\bar{t}}γ$ cross section and the $\mathrm{t\bar{t}}γ/\mathrm{t\bar{t}}$ cross section ratio in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-23-002, 2025.
Inspire Record 3076866 DOI 10.17182/hepdata.157848

Inclusive and differential cross section measurements of top quark pair ($\mathrm{t\bar{t}}$) production in association with a photon ($γ$) are performed as a function of lepton, photon, top quark, and $\mathrm{t\bar{t}}$ kinematic observables, using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events containing two leptons (electrons or muons) and a photon in the final state are considered. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is measured to be 137 $\pm$ 8 fb, in a phase space including events with a high momentum, isolated photon. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is also measured to be 56 $\pm$ 5 fb when considering only events where the photon is emitted in the production part of the process. Both measurements are in agreement with the theoretical predictions, of 126 $\pm$ 19 fb and 57 $\pm$ 5 fb, respectively. Differential measurements are performed at the particle and parton levels. Additionally, inclusive and differential ratios between the cross sections of $\mathrm{t\bar{t}}γ$ and $\mathrm{t\bar{t}}$ production are measured. The inclusive ratio is found to be 0.0133 $\pm$ 0.0005, in agreement with the standard model prediction of 0.0127 $\pm$ 0.0008. The top quark charge asymmetry in $\mathrm{t\bar{t}}γ$ production is also measured to be $-$0.012 $\pm$ 0.042, compatible with both the standard model prediction and with no asymmetry.

0 data tables match query

Observation of coherent $\phi$(1020) meson photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\text{NN}}$ = 5.36 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-009, 2025.
Inspire Record 2908607 DOI 10.17182/hepdata.156183

The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.

0 data tables match query

Measurement of beauty-quark production in pp collisions at $\sqrt{s}=13$ TeV via non-prompt D mesons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
JHEP 10 (2024) 110, 2024.
Inspire Record 2762380 DOI 10.17182/hepdata.154893

The $p_{\rm T}$-differential production cross sections of non-prompt ${\rm D^0}$, ${\rm D^+}$, and ${\rm D_s^+}$ mesons originating from beauty-hadron decays are measured in proton$-$proton collisions at a centre-of-mass energy $\sqrt{s}=13$ TeV. The measurements are performed at midrapidity, $|y| < 0.5$, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons, $f_{\rm{s}}/(f_{\rm{u}} + f_{\rm{d}})$, is found to be $0.114 \pm 0.016~{\rm (stat.)} \pm 0.006~{\rm (syst.)} \pm 0.003~{\rm (BR)} \pm 0.003~{\rm (extrap.)}$. This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at $\sqrt{s} = 5.02$ and 13 TeV, showing a hardening of the non-prompt D-meson $p_{\rm T}$-differential production cross section at higher $\sqrt{s}$. Finally, the ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, and $\Lambda_{\rm c}^+$ hadron measurements, obtaining ${\rm d}\sigma/{\rm d}y = 75.2\pm 3.2~(\mathrm{stat.}) \pm 5.2~(\mathrm{syst.})^{+12.3}_{-3.2} ~(\mathrm{extrap.})\text{ } \rm \mu b \;.$

0 data tables match query

Measurement of ${}_{\Lambda}^{3}\mathrm{H}$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Lett.B 860 (2025) 139066, 2025.
Inspire Record 2791616 DOI 10.17182/hepdata.155083

The first measurement of $_{\Lambda}^{3}\mathrm{H}$ and $^3_ {\overline{\Lambda}}\overline{\mathrm{H}}$ differential production with respect to transverse momentum and centrality in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$~TeV is presented. The $_{\Lambda}^{3}\mathrm{H}$ has been reconstructed via its two-charged-body decay channel, i.e., $_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}$. A Blast-Wave model fit of the $p_{\rm T}$-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the $_{\Lambda}^{3}\mathrm{H}$ kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of $_{\Lambda}^{3}\mathrm{H}$ and $^3\mathrm{He}$ is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements.

0 data tables match query

J/$\psi$-hadron correlations at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 07 (2025) 023, 2025.
Inspire Record 2825965 DOI 10.17182/hepdata.158645

We report on the measurement of inclusive, non-prompt, and prompt J/$ψ$-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of $13~\text{TeV}$. The correlations are studied at midrapidity ($|y| < 0.9$) in the transverse momentum ranges $p_{\rm T} < 40~\text{GeV}/c$ for the J/$ψ$ and $0.15 < p_{\rm T} < 10~\text{GeV}/c$ and $|η|<0.9$ for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of $L_{\text{int}} = 34~\text{nb}^{-1}$ and $L_{\text{int}} = 6.9~\text{pb}^{-1}$, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of $E = 4$ and $9~\text{GeV}$ in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of $L_{\text{int}} = 0.9~\text{pb}^{-1}$ and $L_{\text{int}} = 8.4~\text{pb}^{-1}$, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/$ψ$ trigger are presented as a function of the J/$ψ$ and associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.

0 data tables match query

Small-$x$ evolution of gluon fields from incoherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 112301, 2025.
Inspire Record 2899343 DOI 10.17182/hepdata.156185

Incoherent J/$ψ$ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This study reports the first measurement of the photon-nucleon center-of-mass energy ($W_{γ\mathrm{N}}$) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb$^{-1}$ of data recorded by the CMS experiment. The measurement covers a wide $W_{γ\mathrm{N}}$ range of $\approx$ 40-400 GeV, probing gluons carrying a fraction $x$ of nucleon momentum down to an unexplored region of 6.5 $\times$ 10$^{-5}$. Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower $x$. Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed $W_{γ\mathrm{N}}$ and $x$ range, disfavoring the establishment of the black disk limit. This study provides critical insights into the $x$-dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.

0 data tables match query

Measurement of light-by-light scattering and the Breit-Wheeler process, and search for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2025) 006, 2025.
Inspire Record 2861858 DOI 10.17182/hepdata.155674

Measurements of light-by-light scattering (LbL, $γγ$$\to$$γγ$) and the Breit-Wheeler process (BW, $γγ$$\to$$\mathrm{e^+e^-}$) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb$^{-1}$, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively produced $γγ$ or $\mathrm{e^+e^-}$ pair with invariant masses $m^{γγ,\mathrm{ee}}$$>$ 5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section, $σ_\text{fid}$($γγ$$\to$$\mathrm{e^+e^-}$) = 263.5 $\pm$ 1.8 (stat) $\pm$ 17.8 (syst) $μ$b, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discriminating between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 $\pm$ 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section, $σ_\text{fid} (γγ$$\to$$γγ)$ = 107 $\pm$ 24 (stat) $\pm$ 13 (syst) nb, is in agreement with next-to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5-100 GeV, including the most stringent limits to date in the range of 5-10 GeV.

0 data tables match query

Measurements of differential two-particle number and transverse momentum correlation functions in pp collisions at $\sqrt{\textit{s}}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 866, 2025.
Inspire Record 2847021 DOI 10.17182/hepdata.159895

Differential two-particle normalized cumulants ($R_2$) and transverse momentum correlations ($P_2$) are measured as a function of the relative pseudorapidity and azimuthal angle difference $( Δη, Δφ)$ of charged particle pairs in minimum bias pp collisions at $\sqrt{\textit{s}}$ = 13 TeV. The measurements use charged hadrons in the pseudorapidity region of $|η| < 0.8$ and the transverse momentum range \mbox{0.2 $< \textit{p}_{\mathrm T} < $ 2.0 $\mathrm{GeV}/\textit{c}$} in order to focus on soft multiparticle interactions and to complement prior measurements of these correlation functions in p-Pb and Pb-Pb collisions. The correlation functions are reported for both unlike-sign and like-sign pairs and their charge-independent and charge-dependent combinations. Both the $R_2$ and $P_2$ measured in pp collisions exhibit features qualitatively similar to those observed in p--Pb and Pb--Pb collisions. The $Δη$ and $Δφ$ root mean square widths of the near-side peak of the correlation functions are evaluated and compared with those observed in p-Pb and Pb-Pb collisions and show smooth evolution with the multiplicity of charged particles produced in the collision. The comparison of the measured correlation functions with predictions from PYTHIA8 shows that this model qualitatively captures their basic structure and characteristics but feature important differences. In addition, the $R_2^{\rm CD}$ is used to determine the charge balance function of hadrons produced within the detector acceptance of the measurements. The integral of the balance function is found to be compatible with those reported by a previous measurement in Pb--Pb collisions.

0 data tables match query

Study of $\langle p_{\rm T} \rangle$ and its higher moments, and extraction of the speed of sound in Pb-Pb collisions with ALICE

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
JHEP 11 (2025) 076, 2025.
Inspire Record 2933773 DOI 10.17182/hepdata.165515

Ultrarelativistic heavy-ion collisions create a quark-gluon plasma (QGP), a hot and dense state of strongly interacting QCD matter. In ultracentral collisions, the QGP volume remains nearly constant event-by-event, while its total entropy can fluctuate due to quantum effects, leading to temperature variations. These features allow the correlation between the mean transverse momentum $(\langle p_{\mathrm{T}} \rangle)$ of charged hadrons and their multiplicity to serve as a probe of the QGP's speed of sound, $c_{s}$. This study extracts $c_{s}$ by analyzing the relative increase in $\langle p_{\mathrm{T}} \rangle$ with respect to the charged-particle density $(\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle)$ at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$, using data from the ALICE detector. Centrality is determined with estimators based on multiplicity and transverse energy, applying a pseudorapidity gap to reduce selection biases. The extracted value of $c_{s}^{2}$ is found to strongly depend on the employed centrality estimator and ranges between $0.1146 \pm 0.0028 \,\mathrm{(stat.)} \pm 0.0065 \,\mathrm{(syst.)}$ and $0.4374 \pm 0.0006 \mathrm{(stat.)} \pm 0.0184 \mathrm{(syst.)}$ in natural units. Additionally, the event-by-event $[p_{\mathrm{T}}]$ distribution is studied through its variance, skewness, and kurtosis. A pronounced decrease in the self-normalized variance and a peak followed by a drop in skewness suggest the suppression of impact-parameter fluctuations in ultracentral collisions. These observations provide new insights into the thermodynamic properties and initial-state fluctuations of the QGP.

0 data tables match query