Date

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2025) 011, 2025.
Inspire Record 2750408 DOI 10.17182/hepdata.146028

The inclusive jet cross section is measured as a function of jet transverse momentum $p_\mathrm{T}$ and rapidity $y$. The measurement is performed using proton-proton collision data at $\sqrt{s}$ = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb$^{-1}$. The jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm using a distance parameter of $R$ = 0.4, within the rapidity interval $\lvert y\rvert$$\lt$ 2, and across the kinematic range 0.06 $\lt$$p_\mathrm{T}$$\lt$ 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization / factorization scales and the strong coupling $\alpha_\mathrm{S}$.

0 data tables match query

Search for $CP$ violation in events with top quarks and Z bosons at $\sqrt{s}$ = 13 and 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-24-012, 2025.
Inspire Record 2925585 DOI 10.17182/hepdata.157847

A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.

0 data tables match query

Version 2
Search for long-lived particles decaying to a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 228, 2023.
Inspire Record 2083735 DOI 10.17182/hepdata.129518

An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.

0 data tables match query

Multimuons in cosmic-ray events as seen in ALICE at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JCAP 04 (2025) 009, 2025.
Inspire Record 2842099 DOI 10.17182/hepdata.158063

ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3d. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}<E_\mathrm{prim}< 6 \times 10^{16}$~eV. In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However, QGSJET-II-04 is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL 2.3d and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than $20\%$ and $30\%$, respectively. The rate of high muon multiplicity events ($N_\mu>100$) obtained with QGSJET-II-04 and SIBYLL 2.3d is compatible with the data, while EPOS-LHC produces a significantly lower rate ($55\%$ of the measured rate). For both QGSJET-II-04 and SIBYLL 2.3d, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy $E_\mathrm{prim} \sim 10^{17}$ eV of these events. This result places significant constraints on more exotic production mechanisms.

0 data tables match query

Version 2
Measurement of jet substructure observables in $\mathrm{t\overline{t}}$ events from proton-proton collisions at $\sqrt{s} =$ 13TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 98 (2018) 092014, 2018.
Inspire Record 1690148 DOI 10.17182/hepdata.84716

A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.

0 data tables match query

Measurement of the $\Lambda_b$ polarization and angular parameters in $\Lambda_b\to J/\psi\, \Lambda$ decays from pp collisions at $\sqrt{s}=$ 7 and 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 072010, 2018.
Inspire Record 1654926 DOI 10.17182/hepdata.83664

An analysis of the decay $\Lambda_b \to J/\psi(\to\mu^+\mu^-)\Lambda(\to p \pi^-)$ decay is performed to measure the $\Lambda_b$ polarization and three angular parameters in data from pp collisions at $\sqrt{s} =$ 7 and 8 TeV, collected by the CMS experiment at the LHC. The $\Lambda_b$ polarization is measured to be 0.00 $\pm$ 0.06 (stat) $\pm$ 0.06 (syst) and the parity-violating asymmetry parameter is determined to be 0.14 $\pm$ 0.14 (stat) $\pm$ 0.10 (syst). The measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.

0 data tables match query

Search for rare decays of Z and Higgs bosons to J$/\psi$ and a photon in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 94, 2019.
Inspire Record 1700175 DOI 10.17182/hepdata.89175

A search is presented for decays of Z and Higgs bosons to a J$/\psi$ meson and a photon, with the subsequent decay of the J$/\psi$ to $\mu^+\mu^-$. The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb$^{-1}$ at $\sqrt{s} =$ 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z $\to$ J$/\psi \gamma$ decay branching fraction, assuming that the J$/\psi$ meson is produced unpolarized, is 1.4 $\times$ 10$^{-6}$ at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from -13.6 to +8.6% with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ where the J$/\psi$ meson is assumed to be transversely polarized is 7.6 $\times$ 10$^{-4}$, a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at $\sqrt{s} =$ 8 TeV to produce an observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ that is a factor of 220 larger than the standard model value.

0 data tables match query

Measurement of the $\mathrm{t\bar{t}}$ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 846 (2023) 137703, 2023.
Inspire Record 2132366 DOI 10.17182/hepdata.127992

The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.

0 data tables match query

Studies of charm quark diffusion inside jets using PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 102001, 2020.
Inspire Record 1763389 DOI 10.17182/hepdata.88286

The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with $p_\mathrm{T}^\mathrm{jet}$$>$ 60 GeV and D$^0$ mesons with $p_\mathrm{T}^\mathrm{D}$$>$ 4 GeV in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D$^0$ mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in PbPb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well-described by PYTHIA, while the slope of the distribution predicted by SHERPA is steeper than that of the data. In PbPb collisions, compared to the pp results, the D$^0$ meson distribution for 4 $<$$p_\mathrm{T}^\mathrm{D}$$<$ 20 GeV hints at a larger distance on average with respect to the jet axis, reflecting a diffusion of charm quarks in the medium created in heavy ion collisions. At higher $p_\mathrm{T}^\mathrm{D}$, the PbPb and pp radial distributions are found to be similar.

0 data tables match query

Measurements of polarization and spin correlation and observation of entanglement in top quark pairs using lepton+jets events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 110 (2024) 112016, 2024.
Inspire Record 2829523 DOI 10.17182/hepdata.153301

Measurements of the polarization and spin correlation in top quark pairs ($\mathrm{t\bar{t}}$) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the $\mathrm{t\bar{t}}$ system and the top quark scattering angle in the $\mathrm{t\bar{t}}$ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the $\mathrm{t\bar{t}}$ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for $\mathrm{t\bar{t}}$ states at the production threshold and at high masses of the $\mathrm{t\bar{t}}$ system. Entanglement is observed for the first time in events at high $\mathrm{t\bar{t}}$ mass, where a large fraction of the $\mathrm{t\bar{t}}$ decays are space-like separated, with an expected and observed significance of above 5 standard deviations.

0 data tables match query