Showing 4 of 4 results
The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Pb+Pb 5.02 TeV
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Xe+Xe 5.44 TeV
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
The underlying event activity in proton-proton collisions at forward pseudorapidity (-6.6 < eta < -5.2) is studied with the CMS detector at the LHC, using a novel observable: the ratio of the forward energy density, dE/d(eta), for events with a charged-particle jet produced at central pseudorapidity (abs(eta[jet]) < 2) to the forward energy density for inclusive events. This forward energy density ratio is measured as a function of the central jet transverse momentum, pt, at three different pp centre-of-mass energies (sqrt(s) = 0.9, 2.76, and 7 TeV). In addition, the sqrt(s) evolution of the forward energy density is studied in inclusive events and in events with a central jet. The results are compared to those of Monte Carlo event generators for pp collisions and are discussed in terms of the underlying event. Whereas the dependence of the forward energy density ratio on jet pt at each sqrt(s) separately can be well reproduced by some models, all models fail to simultaneously describe the increase of the forward energy density with sqrt(s) in both inclusive events and in events with a central jet.
Ratio of the energy deposited in the pseudorapidity range $-6.6 < \eta < -5.2$ for events with a charged-particle jet with $|\eta^\text{jet}| < 2$ with respect to the energy in inclusive events, as a function of the jet transverse momentum $p_{\rm T}$ for $\sqrt{s} =$ 0.9, 2.76 , and 7 TeV. Data are taken from the Rivet Analysis.
Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.
The double ratio R_double at 900 and 7000 GeV.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity.
Parameters of the fit to the double ratio R_double at 900 GeV.
Parameters of the fit to the double ratio R_double at 7000 GeV.
Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.
Mean multiplicity for charged hadron production for |pseudorapidity| < 2.4.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 0.5 at a centre-of-mass energy of 900 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.0 at a centre-of-mass energy of 900 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.5 at a centre-of-mass energy of 900 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.0 at a centre-of-mass energy of 900 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 at a centre-of-mass energy of 900 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 0.5 at a centre-of-mass energy of 2360 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.0 at a centre-of-mass energy of 2360 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.5 at a centre-of-mass energy of 2360 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.0 at a centre-of-mass energy of 2360 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 at a centre-of-mass energy of 2360 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 0.5 at a centre-of-mass energy of 7000 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.0 at a centre-of-mass energy of 7000 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.5 at a centre-of-mass energy of 7000 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.0 at a centre-of-mass energy of 7000 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 at a centre-of-mass energy of 7000 GeV.
Normalised moments C_Q at a centre-of-mass energy of 0.9 TeV.
Normalised moments C_Q at a centre-of-mass energy of 2.36 TeV.
Normalised moments C_Q at a centre-of-mass energy of 7.0 TeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 and PT > 500 MeV at a centre-of-mass energy of 900 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 and PT > 500 MeV at a centre-of-mass energy of 2360 GeV.
Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 and PT > 500 MeV at a centre-of-mass energy of 7000 GeV.
Mean transverse momentum for |pseudorapidity| < 2.4 at a centre-of-mass energy of 900 GeV.
Mean transverse momentum for |pseudorapidity| < 2.4 at a centre-of-mass energy of 2360 GeV.
Mean transverse momentum for |pseudorapidity| < 2.4 at a centre-of-mass energy of 7000 GeV.
The charged hadron multiplicity distributions in KNO form for |pseudorapidity| < 0.5 at a centre-of-mass energy of 900 GeV.
The charged hadron multiplicity distributions in KNO form for |pseudorapidity| < 2.4 at a centre-of-mass energy of 900 GeV.
The charged hadron multiplicity distributions in KNO form for |pseudorapidity| < 0.5 at a centre-of-mass energy of 7000 GeV.
The charged hadron multiplicity distributions in KNO form for |pseudorapidity| < 2.4 at a centre-of-mass energy of 7000 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.