Showing 2 of 2 results
A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2100-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1800-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2300-1200. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1900-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2800-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2300-1000. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2100-1600. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2000-1800. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
Results of the background-only fit extrapolated to SR_Gtt_0L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2100_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1800_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2300_1200 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1900_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2800_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2300_1000 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2100_1600 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2000_1800 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Acceptance for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Cutflow for the SR-Gtt-0L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-B for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-M for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-C for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-B for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-M for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-C for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2100-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1800-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2300-1200 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1900-1400 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2800-1400 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2300-1000 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2100-1600 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2000-1800 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, $a$, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+$a$ model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.
Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Efficiencies of the DMt samples in the tW2L SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Acceptances on TRUTH level of the DMt samples in the tW2L SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Efficiencies of the DMt samples in the tW2L SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tW2L SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Efficiencies of the DMt samples in the tj1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The map includes all used samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tj1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The map includes all used samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW1L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW1L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW2L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW2L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering only the DMt signal.
Upper limits on excluded cross sections of the combined tW1L and tW2L analyses considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering only the DMt signal.
Upper limits on excluded cross sections of the combined tW1L and tW2L analyses considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tj1L analysis considering only the DMt signal.
Upper limits on upper limits on excluded cross sections of the tj1L analysis considering only the DMt signal.
The expected and observed cross section exclusion limits as a function of $m_{H^{\pm}}$ in the tj1L analysis channel for signal models with $m_a = 250~GeV$, and $\tan\beta=0.3$. The $\sigma^{}_\mathrm{BSM}$ is the cross section of the $t$-channel DM production process.
The expected and observed cross section exclusion limits as a function of $m_{H^{\pm}}$ in the tj1L analysis channel for signal models with $m_a = 250~GeV$, and $\tan\beta=0.5$. The $\sigma^{}_\mathrm{BSM}$ is the cross section of the $t$-channel DM production process.
Cross sections of the DMt samples in the tW1L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Cross sections of the DMt samples in the tW1L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Cross sections times branching ratio of the DMt samples in the tW2L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Cross sections times branching ratio of the DMt samples in the tW2L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Cross sections of the DMt samples in the tj1L channel. The map includes all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tW1L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
MC generator filter efficiencies of the DMt samples in the tW1L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tW2L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
MC generator filter efficiencies of the DMt samples in the tW2L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tj1L channel. The map includes all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Background-only fit results for the tW1L and tW2L signal regions. The backgrounds which contribute only a small amount (rare processes such as triboson, Higgs boson production processes, $t\bar{t}t\bar{t}$, $t\bar{t}WW$ and non-prompt or misidentified leptons background) are grouped and labelled as ``Others´´. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the tj1L signal regions. The backgrounds which contribute only a small amount ($Z$+jets, rare processes such as $tWZ$, triboson, Higgs boson production processes, ,$t\bar{t}t\bar{t}$, $t\bar{t}WW$) are grouped and labelled as ``Others´´. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Cutflow of the weighted events with statistical uncertainties for two DMt samples in all bins of the tW1L channel. The PreSelection includes at least 1 lepton in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 50~GeV$, $m\mathrm{_{T}^{lep}} > 30~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
Cutflow of the weighted events with statistical uncertainties for two DMt samples in the tW2L channel. The PreSelection includes at least 2 leptons in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 40~GeV$, $m_{ll} > 40~GeV$, $m\mathrm{_{T2}} > 40~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
Cutflow of the weighted events with the statistical uncertainties (except for the first cuts) for two DMt samples in all bins off the tj1L channel. The PreSelection includes at least 1 lepton in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 50~GeV$, $m\mathrm{_{T}^{lep}} > 30~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.