A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded.
A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.
The $M_{T}$ distribution in the WZ-enriched region. The last bin contains the overflow events.
The $L_{T}$ distribution in the ttZ-enriched region. The last bin contains the overflow events.
The $S_{T}$ distribution in the ZZ-enriched region. The last bin contains the overflow events.
A search for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2016-2018. Candidate signal events containing nonprompt jets are identified using the timing capabilities of the CMS electromagnetic calorimeter. The results of the search are consistent with the background prediction and are interpreted using a gauge-mediated supersymmetry breaking reference model with a gluino next-to-lightest supersymmetric particle. In this model, gluino masses up to 2100, 2500, and 1900 GeV are excluded at 95% confidence level for proper decay lengths of 0.3, 1, and 100 m, respectively. These are the best limits to date for such massive gluinos with proper decay lengths greater than $\sim$0.5 m.
Summary of the estimated number of background events.
The timing distribution of the background sources predicted to contribute to the signal region, compared to those for a representative signal model. The time is defined by the jet in the event with the largest $t_{\mathrm{jet}}$ passing the relevant selection. The distributions for the major backgrounds are taken from control regions and normalized to the predictions. The observed data is shown by the black points. No events are observed in data for $t_{\mathrm{jet}} > 3\,$ns (indicated with a vertical black line).
The product of the acceptance and efficiency in the $c\tau_{0}$ vs. $m_{\tilde{g}}$ plane for the GMSB model, after all requirements.
A general search is presented for a low-mass $\tau^-\tau^+$ resonance produced in association with a bottom quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The data are consistent with the standard model expectation. Upper limits at 95% confidence level on the cross section times branching fraction are determined for two signal models: a light pseudoscalar Higgs boson decaying to a pair of $\tau$ leptons produced in association with bottom quarks, and a low-mass boson X decaying to a $\tau$-lepton pair that is produced in the decay of a bottom-like quark B such that B $\to$ bX. Masses between 25 and 70 GeV are probed for the light pseudoscalar boson with upper limits ranging from 250 to 44 pb. Upper limits from 20 to 0.3 pb are set on B masses between 170 and 450 GeV for X boson masses between 20 and 70 GeV.
The product of acceptance, efficiency, and branching fraction of $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with $\mathrm{A} \rightarrow \tau\tau$ in the $\mathrm{e}\tau_\mathrm{h}$ and $\mu\tau_\mathrm{h}$ channels of the 1 b tag event category, as a function of the pseudoscalar mass. The selections are as described in the paper. The uncertainty refers to the statistical uncertainty only.
Observed $m_{\tau\tau}$ distribution in the $\mathrm{e}\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.
Observed $m_{\tau\tau}$ distribution in the $\mu\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.
A search is performed for events consistent with the pair production of a new heavy particle that acts as a mediator between a dark sector and normal matter, and that decays to a light quark and a new fermion called a dark quark. The search is based on data corresponding to an integrated luminosity of 16.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016. The dark quark is charged only under a new quantum-chromodynamics-like force, and forms an "emerging jet" via a parton shower, containing long-lived dark hadrons that give rise to displaced vertices when decaying to standard model hadrons. The data are consistent with the expectation from standard model processes. Limits are set at 95% confidence level excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay lengths smaller than 5 mm and greater than 225 mm are also excluded in the lower part of this mass range. The dependence of the limit on the dark pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new particle that decays to a jet and an emerging jet.
Distributions of $\langle IP_{\mathrm{2D}}\rangle$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion proper decay length of 25 mm, for various dark pion masses.
Distributions of $\alpha_\mathrm{3D}$ for background (black) and for signals with a mediator mass of 1 TeV and a dark pion mass of 5 GeV for dark pion proper decay lengths ranging from 1 to 300 mm.
The signal acceptance A, defined as the fraction of simulated signal events passing the selection criteria, for models with a dark pion mass $m_{\pi_\mathrm{DK}}$ of 5 GeV as a function of the mediator mass $m_{\mathrm{X_{DK}}}$ and the dark pion proper decay length $c\tau_{\pi_\mathrm{DK}}$. The corresponding selection set number for each model is indicated as text on the plot.
A search for a new heavy particle decaying to a pair of vector bosons (WW or WZ) is presented using data from the CMS detector corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at a centre-of-mass energy of 13 TeV in 2016. One of the bosons is required to be a W boson decaying to e$\nu$ or $\mu\nu$, while the other boson is required to be reconstructed as a single massive jet with substructure compatible with that of a highly-energetic quark pair from a W or Z boson decay. The search is performed in the resonance mass range between 1.0 and 4.5 TeV. The largest deviation from the background-only hypothesis is observed for a mass near 1.4 TeV and corresponds to a local significance of 2.5 standard deviations. The result is interpreted as an upper bound on the resonance production cross section. Comparing the excluded cross section values and the expectations from theoretical calculations in the bulk graviton and heavy vector triplet models, spin-2 WW resonances with mass smaller than 1.07 TeV and spin-1 WZ resonances lighter than 3.05 TeV, respectively, are excluded at 95% confidence level.
Exclusion limits on the product of the production cross section and the branching fraction for a new spin-2 resonance decaying to WW, as a function of the resonance mass hypothesis.
Exclusion limits on the product of the production cross section and the branching fraction for a new spin-1 resonance decaying to WZ, as a function of the resonance mass hypothesis.
Signal selection efficiency times acceptance as a function of resonance mass for a spin-2 bulk graviton decaying to WW and a spin-1 W' decaying to WZ.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of muon background in electroweak channel in the low-Emiss region.
Pixel-tracklet $p_{T}$ spectrum of hadron and electron background in electroweak channel in the low-Emiss region.
A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.
A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via $\tilde{t}_1 \rightarrow t^{(*)} \tilde\chi^0_1$ and $\tilde{t}_1\rightarrow b\tilde\chi^\pm_1 \rightarrow b W^{(*)} \tilde\chi^0_1$, where $\tilde\chi^0_1$ ($\chi^\pm_1$) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to $t \tilde\chi^0_1$, top-squark masses in the range 450-950 GeV are excluded for $\tilde\chi^0_1$ masses below 160 GeV. In the case where $m_{\tilde{t}_1}\sim m_t+m_{\tilde\chi^0_1}$, top-squark masses in the range 235-590 GeV are excluded.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
The results of a search for new heavy $W^\prime$ bosons decaying to an electron or muon and a neutrino using proton-proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV are presented. The dataset was collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb$^{-1}$. As no excess of events above the Standard Model prediction is observed, the results are used to set upper limits on the $W^\prime$ boson cross-section times branching ratio to an electron or muon and a neutrino as a function of the $W^\prime$ mass. Assuming a $W^\prime$ boson with the same couplings as the Standard Model $W$ boson, $W^\prime$ masses below 5.1 TeV are excluded at the 95% confidence level.
Transverse mass distribution for events satisfying all selection criteria in the electron channel.
Transverse mass distribution for events satisfying all selection criteria in the muon channel.
Upper limits at the 95% CL on the cross section for SSM W' production and decay to the electron+neutrino channel as a function of the W' pole mass.