Study of inclusive strange-baryon production and search for pentaquarks in two-photon collisions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Eur.Phys.J.C 49 (2007) 395-410, 2007.
Inspire Record 727262 DOI 10.17182/hepdata.51884

Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons in two-photon collisions with the L3 detector at LEP are presented. The inclusive differential cross sections for Lambda and Xi- are measured as a function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event is determined in the kinematic range 0.4 GeV < pt< 2.5 GeV, |eta| < 1.2. Overall agreement with the theoretical models and Monte Carlo predictions is observed. A search for inclusive production of the pentaquark theta+(1540) in two-photon collisions through the decay theta+ -> proton K0s is also presented. No evidence for production of this state is found.

11 data tables

Differential cross section for LAMBDA production.

Differential cross section for LAMBDA production.

Differential cross section for XI- production.

More…

Inclusive Lambda production in two-photon collisions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 586 (2004) 140-150, 2004.
Inspire Record 637287 DOI 10.17182/hepdata.48849

The reactions e^+e^- -> e^+e^- Lambda X and e^+e^- -> e^+e^- Lambda X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. Inclusive differential cross sections are measured as a function of the lambda transverse momentum, p_t, and pseudo-rapidity, eta, in the ranges 0.4 GeV < p_t < 2.5 GeV and |\eta| < 1.2. The data are compared to Monte Carlo predictions. The differential cross section as a function of p_t is well described by an exponential of the form A exp (- p_t / <p_t>)$.

2 data tables

The differential cross section for LAMBDA production as a function of PT.

The differential cross section for LAMBDA production as a function of pseudorapidity in two PT regions.


Measurement of the inclusive D*+- production in gamma gamma collisions at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 28 (2003) 437-449, 2003.
Inspire Record 612223 DOI 10.17182/hepdata.48891

The inclusive production of D$^{*\pm}$ mesons in two-photon collisions is measured with the ALEPH detector at $\epem$ centre-of-mass energies from 183$\unit{GeV}$ to 209$\unit{GeV}$. A total of $360 \pm 27$ D$^{*\pm}$ meson events were observed from an integrated luminosity of 699\unit{pb^{-1}}$. Contributions from direct and single-resolved rocesses are separated using the ratio of the transverse momentum $p_{\rm t}^{\rm D^{*\pm}}$ of the D$^{*\pm}$ to the visible invariant mass $W_{\mathrm{vis}}$ of the event. Differential cross sections of D$^{*\pm}$ production as functions of $p_{\rm t}^{\rm D^{*\pm}}$ and the pseudorapidity $|\eta^{\rm D^{*\pm}}| $ are measured in the range $ 2\unit{GeV}/c < p_{\rm t}^{\rm D^{*\pm}} < 12\unit{GeV}/c $ and $ |\eta^{\rm D^{*\pm}}| < 1.5 $. They are compared to next-to-leading order (NLO)perturbative QCD calculations. The extrapolation of the integrated visible D$^{*\pm}$ cross section to the total charm cross section, based on the Pythia Monte Carlo program, yields $ \sigma (\epem \to \epem \ccbar)_ {=197\unit{GeV}} = 731 \pm 74_{\mathrm{stat}} \pm 47_{\mathrm{syst}} \pm 157_{\mathrm{extr}} \unit{pb} $.

7 data tables

Total extrapolated charm production cross section. The second DSYS error isdue to the uncertainty in the extrapolation.

Visible cross section with the acceptance range.

Visible cross section within the acceptance ranges for the three decay modes observed.

More…

Inclusive charged hadron production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 554 (2003) 105-114, 2003.
Inspire Record 605973 DOI 10.17182/hepdata.48854

Inclusive charged hadron production, e+e- -> e+e- h+- X, is studied using 414 pb-1 of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Single particle inclusive differential cross sections are measured as a function of the particle transverse momentum, pt, and pseudo-rapidity, eta. For p_t &lt; 1.5 GeV, the data are well described by an exponential, typical of soft hadronic processes. For higher pt, the onset of perturbative QCD processes is observed. The pi+- production cross section for pt > 5 GeV is much higher than the NLO QCD predictions.

4 data tables

Transverse momentum distribution for inclusive charged hadron production.

Transverse momentum distributions for charged pion and charged kaon production separately.

Transverse momentum distributions for charged pion production with different W (effective mass of the GAMMA GAMMA system) cuts.

More…

Inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 535 (2002) 59-69, 2002.
Inspire Record 585623 DOI 10.17182/hepdata.54885

Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV &lt; P_T &lt; 12 GeV and |eta| &lt; 1.4. The cross sections sigma(e^+e^- -> e^+e^-D^{*+-}X) in this kinematical region is measured and the sigma(e^+e^- -> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

4 data tables

Visible D*+- production cross section in the given phase space range. Data are given for each D* decay channel, and the average.

Total cross section for open charm production. Data are given for each D* decay channel, and the combined average. The second systematic (DSYS) error is the uncertainty on the extrapolation from the visible to the full phase space region.

The measured D*+- production cross section in the region ABS(ETARAP) < 1.4.The DSIG/DPT points refer to the centre of the bin and the SIG points are the integrated over the bin.

More…

Inclusive pi0 and K0(S) production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 524 (2002) 44-54, 2002.
Inspire Record 563335 DOI 10.17182/hepdata.49800

The reactions ee->ee+pi0+X and ee->ee+K0s+X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Inclusive differential cross sections are measured as a function of the particle transverse momentum pt and the pseudo-rapidity. For pt &lt; 1.5 GeV, the pi0 and K0s differential cross sections are described by an exponential, typical of soft hadronic processes. For pt > 1.5 GeV, the cross sections show the presence of perturbative QCD processes, described by a power-law. The data are compared to Monte Carlo predictions and to NLO QCD calculations.

4 data tables

The PI0 differential cross section as a function of PT.

The PI0 differential cross section as a function of pseudorapidity.

The K0S differential cross section as a function of PT.

More…

Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

13 data tables

The differential dijet cross section dsig/dZP1.

The differential dijet cross section dsig/dlog10(x).

The differential dijet cross section dsig/dlog10(xi).

More…

Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Nucl.Phys.B 596 (2001) 3-29, 2001.
Inspire Record 534829 DOI 10.17182/hepdata.46889

Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

5 data tables

The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.

More…

Measurement of inclusive D/s+- photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 481 (2000) 213-227, 2000.
Inspire Record 524912 DOI 10.17182/hepdata.47017

The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.

3 data tables

The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.

The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.

The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.


Measurement of inclusive prompt photon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 472 (2000) 175-188, 2000.
Inspire Record 508908 DOI 10.17182/hepdata.43894

First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.

2 data tables

The differential cross section for inclusive photoproduction of isolated photons.

Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

22 data tables

The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.

The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

More…

Measurement of inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 467 (1999) 137-146, 1999.
Inspire Record 505281 DOI 10.17182/hepdata.28070

Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $&lt; p_{T}^{\mathrm{D^*}} &lt; 5 $ GeV and $\mathrm{|\eta^{D^*}|} &lt; 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

3 data tables

The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.

The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.

Integrated cross section in the visible kinematic region.


Measurement of Dijet photoproduction at high transverse energies at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 11 (1999) 35-50, 1999.
Inspire Record 500491 DOI 10.17182/hepdata.43992

The cross section for dijet photoproduction at high transverse energies is presented as a function of the transverse energies and the pseudorapidities of the jets. The measurement is performed using a sample of ep-interactions corresponding to an integrated luminosity of 6.3 pb^(-1), recorded by the ZEUS detector.Jets are defined by applying a k_T-clustering algorithm to the hadrons observed in the final state. The measured cross sections are compared to next-to-leading order QCD calculations. In a kinematic regime where theoretical uncertainties are expected to be small, the measured cross sections are higher than these calculations.

24 data tables

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

More…

Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 67-83, 1999.
Inspire Record 472962 DOI 10.17182/hepdata.44219

Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.

6 data tables

Integrated D*+- cross sections from the decay channel (1) AND (2).

Differential cross section, as a function of transverse momentum, from decay channel (1).

Differential cross section, as a function of pseudo-rapidity, from channel (1).

More…

Diffractive dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 5 (1998) 41-56, 1998.
Inspire Record 469534 DOI 10.17182/hepdata.44302

Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.

5 data tables

Differential cross section as a function of rapidity of the two highest Et jets in event.

Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.

Differential cross section as a function of invariant mass of the GAMMA P system.

More…

High E(T) inclusive jet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 4 (1998) 591-606, 1998.
Inspire Record 467101 DOI 10.17182/hepdata.44376

Inclusive jet differential cross sections for the reaction e+ p --> e+ + jet + X with quasi-real photons have been measured with the ZEUS detector at HERA. These cross sections are given for the photon-proton centre-of-mass energy interval 134 < W < 277 GeV and jet pseudorapidity in the range -1 < eta(jet) < 2 in the laboratory frame. The results are presented for three cone radii in the eta-phi plane, R=1.0, 0.7 and 0.5. Measurements of dsigma/deta(jet) above various jet-transverse-energy thresholds up to 25 GeV and in three ranges of W are presented and compared to next-to-leading order (NLO) QCD calculations. For jets defined with R=1.0 differences between data and NLO calculations are seen at high eta(jet) and low E_T(jet). The measured cross sections for jets defined with R=0.7 are well described by the calculations in the entire measured range of eta(jet) and E_T(jet). The inclusive jet cross section for E_T(jet) > 21 GeV is consistent with an approximately linear variation with the cone radius R in the range between 0.5 and 1.0, and with NLO calculations.

15 data tables

Jet defining cone radius R = 1.0.

Jet defining cone radius R = 1.0.

Jet defining cone radius R = 1.0.

More…

Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 109-122, 1998.
Inspire Record 450085 DOI 10.17182/hepdata.44384

Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.

28 data tables

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 6 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 11 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

More…

D* production in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 402-418, 1997.
Inspire Record 443964 DOI 10.17182/hepdata.44585

This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.

11 data tables

No description provided.

Integrated charm cross sections in two Q**2 regions.

Distribution of the fractional momentum of the D* in the gamma*-p system.

More…

Differential cross sections of D*-+ photoproduction in e p collisions at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 401 (1997) 192-206, 1997.
Inspire Record 441088 DOI 10.17182/hepdata.44632

Inclusive photoproduction of $\dspm$ in ep collisions at HERA has been measured with the ZEUS detector for photon-proton centre of mass energies in the range \linebreak \wrang and photon virtuality Q~2 < 4 \g2. The cross section $\sigma_{ep \to \ds X} $ integrated over the kinematic region \ptrangand \etarang is {\xsecs}. Differential cross sections as functions of $p_{\perp}~{\ds}$, $\eta~{\ds}$ and W are given. The data are compared with two next-to-leading order perturbative QCD predictions. For a calculation using a massive charm scheme the predicted cross sections are smaller than the measured ones. A recent calculation using a massless charm scheme is in agreement with the data.

6 data tables

Data from the (Kpi)pi channel.

Data from the (Kpipipi)pi channel.

Data from the (Kpi)pi channel.

More…

Rapidity Gaps between Jets in Photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 369 (1996) 55-68, 1996.
Inspire Record 401492 DOI 10.17182/hepdata.44803

Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

2 data tables

No description provided.

No description provided.


Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 356 (1995) 129-146, 1995.
Inspire Record 396314 DOI 10.17182/hepdata.44974

Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction $ep \rightarrow jet \; + \; X$ with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies $E_T~{jet}>8$GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the events are due to the exchange of a pomeron with partonic structure, the quark and gluon content of the pomeron is probed at a scale $\sim (E_T~{jet})~2$. A comparison of the measurements with model predictions based on QCD plus Regge phenomenology requires a contribution of partons with a hard momentum density in the pomeron. A combined analysis of the jet cross sections and recent ZEUS measurements of the diffractive structure function in deep inelastic scattering gives the first experimental evidence for the gluon content of the pomeron in diffractive hard scattering processes. The data indicate that between 30\% and 80\% of the momentum of the pomeron carried by partons is due to hard gluons.

2 data tables

No description provided.

No description provided.


Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 348 (1995) 665-680, 1995.
Inspire Record 392980 DOI 10.17182/hepdata.44999

Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.

2 data tables

Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.

Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.


Inclusive jet differential cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 342 (1995) 417-432, 1995.
Inspire Record 378838 DOI 10.17182/hepdata.45054

Inclusive jet differential cross sections for the reaction ep → jet + X at Q 2 below 4 GeV 2 have been measured with the ZEUS detector at HERA using an integrated luminosity of 0.55 pb −1 . These cross sections are given in the kinematic region 0.2 < y < 0.85, for jet pseudorapidities in the ep -laboratory range −1 < η jet < 2 and refer to jets at the hadron level with a cone radius of one unit in the η - θ plane. These results correspond to quasi-real photoproduction at centre-of-mass energies in the range 130–270 GeV and, approximately, for jet pseudorapidities in the interval −3 < η jet ( λp CMS) < 0. These measurements cover a new kinematic regime of the partonic structure of the photon, at typical scales up to ∼300 GeV 2 and photon fractional momenta down to x γ ∼ 10 −2 . Leading logarithm parton shower Monte Carlo calculations, which include both resolved and direct processes and use the predictions of currently available parametrisations of the photon parton distributions, describe in general the shape and magnitude of the measured η jet and E t jet distributions.

5 data tables

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

More…