The first study of $J/\psi\phi$ production in diffractive processes in proton-proton collisions is presented. The study is based on an LHCb dataset recorded at centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5 fb$^{-1}$. The data disfavour a nonresonant $J/\psi\phi$ production but are consistent with a resonant model including several resonant states observed previously only in $B^+ \to J/\psi\phi K^+$ decays. The $\chi_{c0}(4500)$ state is observed with a significance over $5\sigma$ and the $\chi_{c1}(4274)$ is confirmed with a significance of more than $4\sigma$.
Total $J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.
$\chi_{c1}(4140) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.
$\chi_{c1}(4274) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.
The first measurement of the $Z$ boson production cross-section at centre-of-mass energy $\sqrt{s} = 5.02\,$TeV in the forward region is reported, using $pp$ collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of $100 \pm 2\,\rm{pb^{-1}}$. The production cross-section is measured for final-state muons in the pseudorapidity range $2.0<\eta<4.5$ with transverse momentum $p_{\rm{T}}> 20\,\rm{GeV/}\it{c}$. The integrated cross-section is determined to be
\[ \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} \]
for the di-muon invariant mass in the range $60
Systematic uncertainties on the single differential cross-sections in bins of $y^{Z}$, presented in percentage.
Systematic uncertainties on the single differential cross-sections in bins of $p_{T}^{Z}$, presented in percentage.
Systematic uncertainties on the single differential cross-sections in bins of $\phi_{\eta}^{*}$, presented in percentage.
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $\pi^-/\pi^+$, $(p + \bar{p})/(\pi^+ + \pi^-)$, $(K^+ + K^-)/(\pi^+ + \pi^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $\eta$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $\Delta y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport.
The measured ratio of prompt antiproton to proton production at 900 GeV.
The measured ratio of prompt antiproton to proton production at 7000 GeV.
The measured ratio of prompt negative to positive kaon production at 900 GeV.
Prompt production of charmonium $\chi_{c0}$, $\chi_{c1}$ and $\chi_{c2}$ mesons is studied using proton-proton collisions at the LHC at a centre-of-mass energy of $\sqrt{s}=7$TeV. The $\chi_{c}$ mesons are identified through their decay to $J/\psi\gamma$, with $J/\psi\to\mu^+\mu^-$ using photons that converted in the detector. A data sample, corresponding to an integrated luminosity of $1.0\mathrm{fb}^{-1}$ collected by the LHCb detector, is used to measure the relative prompt production rate of $\chi_{c1}$ and $\chi_{c2}$ in the rapidity range $2.0
Measurements of the ratio of $\chi_{c2}$ to $\chi_{c1}$ production cross-sections for the given $J/\psi$ $p_T$ range assuming unpolarized $\chi_c$ production. The first uncertainty is statistical, the second is systematic, the third is from the branching fractions used and the last gives the maximum correction due to the unknown polarization.
Ratio of $\chi_{c0}$ to $\chi_{c2}$ in the observed $J/\psi$\ $p_T$ range from 4-20 GeV. Also given is the $\chi_{c2}$ to $\chi_{c1}$ ratio in the same PT range for comparison. The first systematic error is dominated by the photon efficiency,the $\chi_{c1}$ tail parameters and background modelling, the third from the choiceof $p_T$ spectrum and the fourth from the branching fraction uncertainty.
The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.
The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.
The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.
Decays of $b$ hadrons into final states containing a $D^0$ meson and a muon are used to measure the $b\bar{b}$ production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. In the pseudorapidity interval $2 < \eta < 6$ and integrated over all transverse momenta we find that the average cross-section to produce $b$-flavoured or $\bar{b}$-flavoured hadrons is ($75.3 \pm 5.4 \pm 13.0$) microbarns.
The cross section for b-flavoured hadrons (HADRON/B) as a function of pseudorapidity in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The cross section for b-flavoured hadrons (HADRON/B) over the pseudorapidity range 2.0-6.0 in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The production of $J/\psi$ mesons in proton-proton collisions at $\sqrt{s}$= 7 tev is studied with the LHCb detector at the LHC. The differential cross-section for prompt $J/\psi$ production is measured as a function of the $J/\psi$ transverse momentum p_{\rm T}\ and rapidity $y$ in the fiducial region $p_{\rm T}\in[0;14]$ GeV/c and $y\in[2.0;4.5]$. The differential cross-section and fraction of \j psi\ from $b$-hadron decays are also measured in the same p_{\rm T}\ and $y$ range s. The analysis is based on a data sample corresponding to an integrated luminos ity of 5.2 pb$^{-1}$. The measured cross-sections integrated over the fiducial region are $10.52\pm 0. 04\pm 1.40^{+1.64}_{-2.20}\mu b$ for $\mathrm{prompt}~J/\psi$ production and $1.14 \pm 0. 01\pm 0.16 \mu b$ for $J/\psi$ from $b$-hadron decays, where the first uncertainty is statistical and the second systematic. The $\mathrm{prompt}~J/\psi$ production cross-section is obtained assuming no $J/\psi$ polarisation and the third error indicates the acceptance uncertainty due to this assumption.
Integrated cross section in the defined fiducial region for prompt J/PSIs and for those from b-hadron decay assuming no polarisation. The second systematic error in the prompt cross section is the uncertainty related to the assumption of no polarisation.
The derived cross section for b-hadron production obtained by extrapolation to the full polar angle range using the LHCB MC based on Pythia6.4 and EvtGen and a branching ratio to J/PSI of 1.16+-0.1 PCT.
Mean PT and RMS for prompt J/PSI production (assuming unpolarised).
The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.
The measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The first systematic error is the uncorrelated systemtatic error and the second is the systematic error correlated across bins.
The double differential prompt K0S production cross section in three rapidity bands.
The double differential prompt K0S production cross section in the rapidity band 2.5 to 4.0.
The production of B+- mesons in proton-proton collisions at sqrt(s)=7 TeV is studied using 35 pb-1 of data collected by the LHCb detector. The B+- mesons are reconstructed exclusively in the B+- -> J/psi K+- mode, with J/psi -> mu+ mu-. The differential production cross-section is measured as a function of the B+- transverse momentum in the fiducial region 0 < pT < 40 GeV/c and with rapidity 2.0 < y < 4.5. The total cross-section, summing up B+ and B-, is measured to be sigma(pp -> B+- X, 0 < pT < 40 GeV/c, 2.0 < y < 4.5) = 41.4 +- 1.5 (stat.) +- 3.1 (syst.) mub.
Integrated B+- production cross section for 0<PT<40 GeV and 2.0<Y<4.5.
Differential B+- production cross section as a function of PT for rapidity 2.0 to 4.5.
The prompt production of the charmonium $\chi_{c1}$ and $\chi_{c2}$ mesons has been studied in proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The $\chi_c$ mesons are identified through their decays $\chi_c\to J/\psi\,\gamma$ with $J/\psi \to \mu^+ \mu^-$ using 36 $\mathrm{pb^{-1}}$ of data collected by the LHCb detector in 2010. The ratio of the prompt production cross-sections for the two $\chi_c$ spin states, $\sigma(\chi_{c2})/\sigma(\chi_{c1})$, has been determined as a function of the $J/\psi$ transverse momentum, $p_{\mathrm{T}}^{J/\psi}$, in the range from 2 to 15 GeV/$c$. The results are in agreement with the next-to-leading order non-relativistic QCD model at high $p_{\mathrm{T}}^{J/\psi}$ and lie consistently above the pure leading-order colour singlet prediction.
Ratio of cross sections for $\chi_{c2}$ to $\chi_{c1}$ production in bins of $J/\psi$ transverse momentum over the $J/\psi$ rapidity range 2.0 to 4.5. The second systematic error represents the uncertainty in the $\chi_c \to J/\psi \gamma$ branching fractions with the maximum uncertainties from the unknown $\chi_c$ polarizations shown separately.