The helicity-dependent single $\pi^{0}$ photoproduction cross section on the deuteron and the angular dependence of the double polarisation observable $E$ for the quasi-free single $\pi^0$ production off the proton and the neutron have been measured for the first time from the threshold region up to the photon energy 1.4 GeV. The experiment was performed at the tagged photon facility of the MAMI accelerator and used a circularly polarised photon beam and longitudinally polarised deuteron target. The reaction products were detected using the large acceptance Crystal Ball/TAPS calorimeter, which covered 97% of the full solid angle. Comparing the cross section from the deuteron with the sum of free nucleon cross sections provides a quantitative estimate of the effects of the nuclear medium on pion production. In contrast, comparison of $E$ helicity asymmetry data from quasi-free protons off deuterium with data from a free proton target indicates that nuclear effects do not significantly affect this observable. As a consequence, it is deduced that the helicity asymmetry $E$ on a free neutron can be reliably extracted from measurements on a deuteron in quasi-free kinematics.
Inclusive polarized total cross section as a function of photon beam energy.
Helicity-dependent differential cross section on deuteron at Egamma= 161. MeV
Helicity-dependent differential cross section on deuteron at Egamma= 178. MeV
The reactions $\gamma p\to \eta p$ and $\gamma p\to \eta' p$ have been measured from their thresholds up to the center-of-mass energy $W=1.96$GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections were obtained with unprecedented accuracy, providing fine energy binning and full production-angle coverage. A strong cusp is observed in the total cross section and excitation functions for $\eta$ photoproduction at the energies in vicinity of the $\eta'$ threshold, $W=1896$MeV ($E_\gamma=1447$MeV). This behavior is explained in a revised $\eta$MAID isobar model by a significant branching of the $N(1895)1/2^-$ nucleon resonance to both, $\eta p$ and $\eta' p$, confirming the existence and constraining the properties of this poorly known state.
Run 1. Total cross section as a function of c.m. energy W.
Run 2. Total cross section as a function of c.m. energy W.
Run 3. Total cross section as a function of c.m. energy W.
Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Owing to the unprecedented statistical accuracy and the full angular coverage, the results are sensitive to high partial-wave amplitudes. This is demonstrated by the decomposition of the differential cross sections in terms of Legendre polynomials and by further comparison to model predictions. A new solution of the SAID partial-wave analysis obtained after adding the new data into the fit is presented.
Run 1. Total cross section as a function of c.m. energy W.
Excitation function at cos(Theta_eta)= -0.967
Excitation function at cos(Theta_eta)= -0.900