Measurement of neutral mesons in p+p collisions at sqrt(s) = 200 GeV and scaling properties of hadron production

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 83 (2011) 052004, 2011.
Inspire Record 855102 DOI 10.17182/hepdata.143371

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K^0_S , \omega, \eta prime, and \phi mesons in p + p collisions at = 200 GeV. Measurements \omega and \phi production in different decay channels give consistent results. New results for the \phi are in agreement with previously published data and extend the measured pT coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-pT and characterizing the low-pT regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.

15 data tables

Parameters of the Tsallis fit with Eq. 8 in the paper with all parameters free to vary. Cross sections are in $\mu$b for $J/\psi$ and $\psi^{\prime}$ and in mb for all other particles.

Parameters of the power law fit with Eq. 3 in the paper. Units of $A$ are mb(GeV/$c$)$^{\upsilon + 2}$.

Constant and linear fits to the power law and Tsallis fit parameters. The last column (Prob.) gives the probability estimated by the $\chi^2$/$n.d.f.$ of the fit.

More…

Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

40 data tables

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).

More…

Pion femtoscopy in p+p collisions at sqrt(s)=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 064905, 2011.
Inspire Record 850950 DOI 10.17182/hepdata.97125

The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p+p and heavy ion collisions, under identical analysis and detector conditions.

9 data tables

Fit results from a fit to data using Eq. 11 to parameterize the femtoscopic correlations (standard fit from Figure 6 in the paper).

Fit results from a fit to data using Eq. 11 to parameterize the femtoscopic correlations and Eq. 13 for non-femtoscopic ones (delta - q fit from Figure 6 in the paper)

Fit results from a fit to data using Eq. 11 to parameterize the femtoscopic correlations and Eq. 14 for non-femtoscopic ones (zeta - beta fit from Figure 6 in the paper)

More…

Azimuthal di-hadron correlations in d+Au and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV from STAR

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 82 (2010) 024912, 2010.
Inspire Record 851937 DOI 10.17182/hepdata.100593

Yields, correlation shapes, and mean transverse momenta \pt{} of charged particles associated with intermediate to high-\pt{} trigger particles ($2.5 < \pt < 10$ \GeVc) in d+Au and Au+Au collisions at $\snn=200$ GeV are presented. For associated particles at higher $\pt \gtrsim 2.5$ \GeVc, narrow correlation peaks are seen in d+Au and Au+Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle $\pt < 2$ \GeVc, a large enhancement of the near- ($\dphi \sim 0$) and away-side ($\dphi \sim \pi$) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au+Au collisions compared to d+Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at $\dphi \sim \pi$ in central Au+Au collisions.

10 data tables

Background-subtracted azimuthal angle difference distributions for associated particles with pT between 1.0 and 2.5 GeV/c and for different ranges of trigger particle pT , ranging from 2.5 − 3.0 GeV/c to 3.0 − 4.0 GeV/c. Results are shown for Au+Au collisions with different centrality and d+Au reference results. The rapidity range is |eta| < 1 and as a result the rapidity-difference |deta| < 2. Results are shown for a restricted acceptance of |deta| < 0.7, using tracks within |eta| < 1. The upper and lower range of the systematic uncertainty due to the v2 modulation of the subtracted background is indicated as well.

Background-subtracted azimuthal angle difference distributions for associated particles with pT between 1.0 and 2.5 GeV/c and for different ranges of trigger particle pT , ranging from 4.0 − 6.0 GeV/c to 6.0 − 10.0 GeV/c. Results are shown for Au+Au collisions with different centrality and d+Au reference results. The rapidity range is |eta| < 1 and as a result the rapidity-difference |deta| < 2. Results are shown for a restricted acceptance of |deta| < 0.7, using tracks within |eta| < 1. The upper and lower range of the systematic uncertainty due to the v2 modulation of the subtracted background is indicated as well.

Background-subtracted azimuthal angle difference distributions for different trigger particle pT and associated pT in 0-12% central Au+Au collisions and d+Au reference results. The rapidity range is |eta| < 1 and as a result the rapidity-difference |deta| < 2. Results are shown for a restricted acceptance of |deta| < 0.7, using tracks within |eta| < 1. The upper and lower range of the systematic uncertainty due to the v2 modulation of the subtracted background is indicated as well.

More…

Nuclear modification factors of phi mesons in d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 83 (2011) 024909, 2011.
Inspire Record 852260 DOI 10.17182/hepdata.141454

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1&lt;p_T&lt;7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.

6 data tables

Invariant $p_T$ spectra of the $\phi$ meson for different centrality bins in Au+Au, Cu+Cu, $d$+Au, and $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 200 GeV.

$R_{AA}$ vs. $p_T$ for $\phi$ in central Au+Au collisions, $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ in 10-20% mid-central Au+Au collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $p$+$\bar{p}$ in 60-92% and for $\pi^0$ in 80-92% peripheral Au+Au collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.

$R_{AA}$ vs. $p_T$ for $\phi$ for 30-40% centrality Au+Au and 0-10% centrality Cu+Cu collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ for 40-50% centrality Au+Au and 10-20% centrality Cu+Cu collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.

More…

Elliptic and hexadecapole flow of charged hadrons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 105 (2010) 062301, 2010.
Inspire Record 850211 DOI 10.17182/hepdata.143006

Differential measurements of the elliptic (v_2) and hexadecapole (v_4) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p_T) and collision centrality or the number of participant nucleons (N_part) for Au+Au collisions at sqrt(s_NN)=200 GeV. The v_{2,4} measurements at pseudorapidity |\eta|<=0.35 obtained with four separate reaction plane detectors positioned in the range 1.0<|\eta|<3.9 show good agreement, indicating the absence of significant \eta-dependent nonflow perturbations. Sizable values for v_4(p_T) are observed with a ratio v_4(p_T,N_part)/v_2^2(p_T,N_part)~0.8 for 50<N_part<200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N_part>200 this ratio increases up to 1.7 in the most central collisions.

7 data tables

Glauber quantities ($N_{part}$, $N_{coll}$, $b$) for Au+Au collisions at 200 GeV (PHENIX Run 2007)

Event-plane resolution factors vs. $N_{part}$ for $v_2$ and $v_4$ measurements for the indicated event planes.

Comparison of $v_2$ vs. $N_{part}$ and $v_4$ vs. $N_{part}$ for charged hadrons obtained with several reaction plane detectors for the $p_T$ selections indicated.

More…

Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 690 (2010) 239-244, 2010.
Inspire Record 844983 DOI 10.17182/hepdata.97118

We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.

48 data tables

Balance functions in pseudorapidity windows -0.6 < eta < 0 for 0.15 < pT < 2 GEV/c.

Balance functions in pseudorapidity windows 0 < eta < 1 for 0.15 < pT < 2 GEV/c.

Balance functions in pseudorapidity windows -1 < eta < 0.6 for 0.15 < pT < 2 GEV/c.

More…

Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

16 data tables

Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.

More…

Upsilon cross section in p+p collisions at sqrt(s) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 82 (2010) 012004, 2010.
Inspire Record 842959 DOI 10.17182/hepdata.97119

We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading order in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.

7 data tables

Unlike-sign pair invariant mass distribution with |y_ee| < 0.5.

Like-sign pair invariant mass distribution with |y_ee| < 0.5.

Background subtracted unlike-sign invariant mass distribution.

More…

Charged and strange hadron elliptic flow in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044902, 2010.
Inspire Record 843985 DOI 10.17182/hepdata.98575

We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons $K_{S}^{0}$, $\Lambda$, $\Xi$, $\phi$ in the midrapidity region $|eta|<1.0$. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, $|\eta|<1.0$, with those at forward rapidity, $2.5<|\eta|<4.0$. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that $v_{2}$($p_{T}$) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, $p_T<2GeV/c$, $v_{2}$ scales with transverse kinetic energy, $m_{T}-m$, and (ii) at intermediate $p_T$, $2<p_T<4GeV/c$, it scales with the number of constituent quarks, $n_q$. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of $v_{2}$($p_{T}$) for $K_{S}^{0}$ and $\Lambda$. Eccentricity scaled $v_2$ values, $v_{2}/\epsilon$, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows $v_{2}/\epsilon$ depend on the system size, number of participants $N_{part}$. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.

26 data tables

Charged hadron azimuthal correlations as a function of pT in 0-60% Cu+Cu and p+p collisions at 200 GeV using TPC and FTPC flow vectors.

Charged hadron azimuthal anisotropy v2 as a function of pT in 0-60% Cu+Cu collisions at 200 GeV using TPC flow vectors, and those with subtracting the azimuthal correlations in p+p collisions.

Charged hadron azimuthal anisotropy v2 as a function of pT in 0-60% Cu+Cu collisions at 200 GeV using FTPC flow vectors, and those with subtracting the azimuthal correlations in p+p collisions.

More…