We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.
Differential elliptic flow for pions for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Differential elliptic flow for protons + antiprotons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Differential elliptic flow for kaons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Two-pion correlation functions in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV have been measured by the STAR (Solenoidal Tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The HBT parameters display a weak energy dependence over a broad range in $\sqrt{s_{NN}}$.
Multiplicity dependence of HBT parameters for low-pT (0.125-0.225 GeV/c) pi- pi- channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.
Multiplicity dependence of HBT parameters for low-pT (0.125-0.225 GeV/c) pi+ pi+ channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.
mT dependence of HBT parameters for high multiplicity (0-12%) collisions in pi- pi- channel. They are Coulomb corrected (5 fm Gaussian source assumed), corrected for merging effects ("bad systematic" for STAR-HBT insiders), and corrected for finite-momentum-resolution effects. Systematic errors are estimated by the size of the merging correction and the effect of varying source size used in the Coulomb correction by +/- 1 fm.
The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.
Normalized multiplicity distribution of $h^{−}$ with $p_{T} > 100$ MeV/$c$ at $|\eta| < 0.5$ in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Systematic error on the vertical scale is estimated to be $10\%$. The systematic error on the horizontal scale is $6\%$ for the entire range of multiplicity. The shaded area is $5\%$ most central collisions, selected by ZDC coincidence. The solid curve is the prediction from the HIJING model.
$h^{−}$ $p_{T}$-spectra for the $5\%$ most central Au+Au collisions at midrapidity ($|\eta| < 0.1$) for several systems. The correlated systematical error is estimated to be below $6\%$. The curves are power-law fits to the data.
ratio of STAR and scaled UA1 $p_{T}$-distributions. The errors given are the errors of the STAR data only and do not include the systematic errors from the scaling of the UA1 data to $130$ GeV (i.e., the shaded region in Fig.2 lower panel). The STAR data is for the $5\%$ most central collisions.
Compton scattering cross sections from 12C have been measured at scattering angles of θγ=35°−150° using tagged photons of Eγ=84−105 MeV. Attempts to extract nucleon polarizabilities from the data were hampered by model ambiguities. These included uncertainties in the strength of the electric quadrupole and quasideuteron total photon absorption channels, and in the parametrizations of meson-exchange effects and nuclear form factors. These ambiguities led to large variations in the extracted values of the effective polarizabilities of the bound nucleon. Inelastic Compton scattering cross sections from the 4.44 MeV first-excited state were also obtained.
No description provided.
C12* is 4.44 MeV state.
K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.
Double differential K+ production cross section for forward K+ angles < 12 degs. Statistical errors only.
The invariant cross section for K+ production. Statistical errors only.
Ratio of K+ production cross sections for CU/C and AU/C.
Measurements of the A dependence and pseudorapidity interval (δη) dependence of midrapidity ET distributions in a half-azimuth (Δφ=π) electromagnetic calorimeter are presented for p+Be, p+Au, O+Cu, Si+Au, and Au+Au collisions at the BNL-AGS (Alternating-Gradient Synchrotron). The shapes of the upper edges of midrapidity ET distributions as a function of the pseudorapidity interval δη in the range 0.3 to 1.3, roughly centered at midrapidity, are observed to vary with δη, like multiplicity—the upper edges of the distributions flatten as δη is reduced. At the typical fixed upper percentiles of ET distributions used for nuclear geometry characterization by centrality definition—7 percentile, 4 percentile, 2 percentile, 1 percentile, 0.5 percentile—the effect of this variation in shape on the measured projectile Ap dependence for 16O, 28Si, 197Au projectiles on an Au target is small for the ranges of δη and percentile examined. The ET distributions for p+Au and p+Be change in shape with δη; but in each δη interval the shapes of the p+Au and p+Be distributions remain indentical with each other—a striking confirmation of the absence of multiple-collision effects at midrapidity at AGS energies. The validity of the nuclear geometry characterization versus δη is illustrated by plots of the ET(δη) distribution in each δη interval in units of the measured 〈ET(δη)〉p+Au in the same δη interval for p+Au collisions. These plots, in the physically meaningful units of “number of average p+Au collisions,” are nearly universal as a function of δη, confirming that the reaction dynamics for ET production at midrapidity at AGS energies is governed by the number of projectile participants and can be well characterized by measurements in apertures as small as Δφ=π, δη=0.3.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.22 < ETARAP < 2.5, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.38 < ETARAP < 2.34, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.54 < ETARAP < 2.18, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).
130 GeV is sqrt(S) per nucleon-nucleon collision. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.
Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.
$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $
pbar over p ratio vs. pt
pbar over p ratio vs. rapidity (y)
pbar over p ratio vs. centrality $(n_{ch}/n_{max})$
We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.
No description provided.