Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

2 data tables match query

The mean from the NBD fit as a function of $N_{part}$ for 200 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.

The mean from the NBD fit as a function of $N_{part}$ for 62.4 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.


Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

1 data table match query

Breakup cross section of c-c_bar pairs inside cold nuclear matter for different ranges of rapidity.The breakup cross section is calculated with two models of shadowing for nuclear PDFs ; the EKS model and the NDSG model. The uncertainties given, containing statistical and systematical error, are corresponding to one standard deviation.


Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

1 data table match query

dE_T/deta normalized by the number of participant pairs as a function of the number of participants.


Nuclear modification factors for hadrons at forward and backward rapidities in deuteron gold collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082302, 2005.
Inspire Record 665543 DOI 10.17182/hepdata.141362

We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.

1 data table match query

$R_{cp}$ as a function of $\eta$ for 1.5 < $p_T$ < 4.0 GeV/$c$ for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.


Nuclear effects on hadron production in d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 74 (2006) 024904, 2006.
Inspire Record 711951 DOI 10.17182/hepdata.141892

PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.

2 data tables match query

Transverse momentum in GeV/$c$ for $\pi^{\pm}$.

Transverse momentum in GeV/$c$ for $\pi^{\pm}$.


Measurement of direct photon production in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 012002, 2007.
Inspire Record 726259 DOI 10.17182/hepdata.143523

Cross sections for mid-rapidity production of direct photons in p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for 3 < p_T < 16 GeV/c. Next-to-leading order (NLO) perturbative QCD (pQCD) describes the data well for p_T > 5 GeV/c, where the uncertainties of the measurement and theory are comparable. We also report on the effect of requiring the photons to be isolated from parton jet energy. The observed fraction of isolated photons is well described by pQCD for p_T > 7 GeV/c.

1 data table match query

Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.


Production of omega mesons at large transverse momenta in p + p and d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 75 (2007) 051902, 2007.
Inspire Record 732097 DOI 10.17182/hepdata.143461

The PHENIX experiment at RHIC has measured the invariant cross section for omega-meson production at mid-rapidity in the transverse momentum range 2.5 < p_T < 9.25 GeV/c in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV. Measurements in two decay channels (omega --> pi^0 pi^+ pi^- and omega --> pi^0 gamma) yield consistent results, and the reconstructed omega mass agrees with the accepted value within the p_T range of the measurements. The omega/pi^0 ratio is found to be 0.85 +/- 0.05(stat) +/- 0.09(sys) and 0.94 +/- 0.08(stat) +/- 0.12(sys) in p+p and d+Au collisions respectively, independent of p_T . The nuclear modification factor R_dA is 1.03 +/- 0.12(stat) +/- 0.21(sys) and 0.83 +/- 0.21(stat) +/- 0.17(sys) in minimum bias and central (0-20%) d+Au collisions, respectively.

2 data tables match query

Measured $R_{dA}$ vs $p_T$ for neutral mesons in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for minimum bias.

Measured $R_{dA}$ vs $p_T$ for neutral mesons in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for minimum bias.


Jet properties from dihadron correlations in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 74 (2006) 072002, 2006.
Inspire Record 716897 DOI 10.17182/hepdata.142287

The properties of jets produced in p+p collisions at sqrt(s)=200 GeV are measured using the method of two particle correlations. The trigger particle is a leading particle from a large transverse momentum jet while the associated particle comes from either the same jet or the away-side jet. Analysis of the angular width of the near-side peak in the correlation function determines the jet fragmentation transverse momentum j_T . The extracted value, sqrt(<j_T^2>)= 585 +/- 6(stat) +/- 15(sys) MeV/c, is constant with respect to the trigger particle transverse momentum, and comparable to the previous lower sqrt(s) measurements. The width of the away-side peak is shown to be a convolution of j_T with the fragmentation variable, z, and the partonic transverse momentum, k_T . The <z> is determined through a combined analysis of the measured pi^0 inclusive and associated spectra using jet fragmentation functions measured in e^+e^-. collisions. The final extracted values of k_T are then determined to also be independent of the trigger particle transverse momentum, over the range measured, with value of sqrt(<k_T^2>) = 2.68 +/- 0.07(stat) +/- 0.34(sys) GeV/c.

1 data table match query

Extracted values of $D(x)$ parameters according from the fit to the LEP data and power $n$ of the unmeasured final state parton spectra $\Sigma_q(\bar{p_T})$ extracted from the fit to the single inclusive $\pi^0$ invariant cross section for corresponding fragmentation and fixed values of $\sqrt{<k^2_T>}$ = 2.5 GeV/$c$.


System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

1 data table match query

Collision centrality, energy, and system size dependence of shape parameters.


Azimuthal angle correlations for rapidity separated hadron pairs in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 222301, 2006.
Inspire Record 712584 DOI 10.17182/hepdata.142147

We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.

1 data table match query

$I_{dAu}$ vs. $p_T^{assoc}$ for different centrality, $p_T^{trig}$ and $\eta^{trig}$ bins.