Measurement of the $p p$ Cross-sections in the Momentum Range 0.9-2.0 GeV/c

Shimizu, F. ; Kubota, Y. ; Koiso, H. ; et al.
Nucl.Phys.A 386 (1982) 571-588, 1982.
Inspire Record 11839 DOI 10.17182/hepdata.37042

The pp total, elastic, and all the inelastic cross sections were measured at 11 momenta in the range 0.9–2.0 GeV/c. No clear structure was observed in their momentum dependences. The momentum dependence of the total cross section agrees quite well with the result of a phase-shift analysis by Arndt. Our measurement of the ppπ 0 and pnπ + cross sections served to normalize the earlier systematic but relative and extrapolated measurements of these cross sections over a narrower momentum range. Calculations by König and Kroll based on a pion exchange model including the effect of an I = 1 dibaryon did not fit the single-pion production cross sections.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Multiple Meson Production in Proton-Proton Collisions at 2.85 Bev

Hart, E.L. ; Louttit, R.I. ; Luers, D. ; et al.
Phys.Rev. 126 (1962) 747-756, 1962.
Inspire Record 47769 DOI 10.17182/hepdata.26782

Measurements have been made on 753 four-prong events obtained by exposing the Brookhaven National Laboratory 20-in. liquid hydrogen bubble chamber to 2.85-Bev protons. The partial cross sections observed for multiple meson production reactions are: pp+−(p+p→p+p+π++π−), 2.67±0.13; pn++−, 1.15±0.09; pp+−0, 0.74±0.07; d++−, 0.06±0.02; four or more meson production, 0.04±0.02, all in mb. Production of two mesons appears to occur mainly in peripheral collisions with relatively little momentum transfer. In cases of three-meson production, however, the protons are typically deflected at large angles and are more strongly degraded in energy. The 32, 32 pion-nucleon resonance dominates the interaction; there is some indication that one or both of the T=12, pion-nucleon resonances also play a part. The recently discovered resonance in a T=0, three-pion state appears to be present in the pp+−0 reaction. Results are compared with the predictions of the isobaric nucleon model of Sternheimer and Lindenbaum, and with the statistical model of Cerulus and Hagedorn. The cross section for the reaction π0+p→π++π−+p is derived using an expression from the one-pion exchange model of Drell.

1 data table

No description provided.