Measurement of transverse single-spin asymmetries for mid-rapidity production of neutral pions and charged hadrons in polarized p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 95 (2005) 202001, 2005.
Inspire Record 687618 DOI 10.17182/hepdata.141097

The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.

3 data tables

Invariant cross section vs. $p_T$ for the production of charged hadrons at mid-rapidity.

Mid-rapidity neutral pion transverse single-spin asymmetry, $A_N$, vs. transverse momentum.

Mid-rapidity charged hadron transverse single-spin asymmetry, $A_N$, vs. transverse momentum.


Double helicity asymmetry in inclusive mid-rapidity pi0 production for polarized p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 202002, 2004.
Inspire Record 648739 DOI 10.17182/hepdata.137768

We present a measurement of the double longitudinal spin asymmetry in inclusive pi^0 production in polarized proton-proton collisions at sqrt(s)=200 GeV. The data were taken at the Relativistic Heavy Ion Collider with average beam polarizations of 26%. The measurements are the first of a program to study the longitudinal spin structure of the proton, using strongly interacting probes, at collider energies. The asymmetry is presented for transverse momenta 1-5 GeV/c at mid-rapidity, where next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations describe the unpolarized cross section well. The observed asymmetry is small and is compared with a NLO pQCD calculation with a range of polarized gluon distributions.

3 data tables

Double spin asymmetry for the raw signal ($\pi^0 + BG$), for the background ($BG$) and for $\pi^0$ background corrected; single spin asymmetry for $\pi^0$ background corrected; for the four $p_T$ bins.

Single spin raw asymmetry normalized by the beam polarization, $\epsilon$/$P$, as a function of azimuthal angle $\phi$, for forward neutron production.

The measured double spin asymmetry $A^{\pi^0}_{LL}$ versus mean $p_T$ of $\pi^0$s in each bin. Not included in the figure/table: the correlated for all points scale systematic uncertainty of 65% (scales values and stat. uncertainties of points by the same factor).