High-pT pi^zero Production with Respect to the Reaction Plane in Au + Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 80 (2009) 054907, 2009.
Inspire Record 816486 DOI 10.17182/hepdata.95817

Measurements of the azimuthal anisotropy of high-\pT neutral pion neutral pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV by the PHENIX experiment are presented. The data included in this paper were collected during the 2004 RHIC running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi^0s detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v_2) of the angular distributions are presented as a function of pi^0 transverse momentum p_T for different bins in collision centrality. Measured reaction plane dependent pi^0 yields are used to determine the azimuthal dependence of the pi^0 suppression as a function of p_T, R_AA (Delta phi,p_T). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi^0 suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region, and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.

0 data tables match query

Nuclear modification factors of phi mesons in d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 83 (2011) 024909, 2011.
Inspire Record 852260 DOI 10.17182/hepdata.141454

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1<p_T<7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.

0 data tables match query

Enhanced production of direct photons in Au+Au collisions at sqrt(s_NN)=200 GeV and implications for the initial temperature

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 132301, 2010.
Inspire Record 784417 DOI 10.17182/hepdata.141275

The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.

0 data tables match query

Production of omega mesons in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044902, 2011.
Inspire Record 900308 DOI 10.17182/hepdata.143307

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.

0 data tables match query

Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

0 data tables match query

Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

The PHENIX collaboration Afanasiev, S. ; Aidala, Christine Angela ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 100 (2008) 232301, 2008.
Inspire Record 771583 DOI 10.17182/hepdata.140842

A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.

0 data tables match query

Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 162301, 2007.
Inspire Record 723948 DOI 10.17182/hepdata.143460

Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.

0 data tables match query

Elliptic flow for $\phi$ mesons and (anti)deuterons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 99 (2007) 052301, 2007.
Inspire Record 746499 DOI 10.17182/hepdata.141340

Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The v_2 values for (d^bar)d suggest that elliptic flow is additive for composite particles. This further validation of the universal scaling of v_2 per constituent quark for baryons and mesons suggests that partonic collectivity dominates the transverse expansion dynamics.

0 data tables match query

Correlated production of p and anti-p in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 649 (2007) 359-369, 2007.
Inspire Record 731666 DOI 10.17182/hepdata.143520

Correlations between p and pbar's at transverse momenta typical of enhanced baryon production in Au+Au collisions are reported. The PHENIX experiment measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV. Correlated production of p and p^bar with the trigger particle from the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same pT range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and p^bar in the p_T region of the baryon excess.

0 data tables match query

Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 172301, 2007.
Inspire Record 731668 DOI 10.17182/hepdata.57287

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons from heavy flavor (charm and bottom) decays for 0.3 < p_T < 9 GeV/c at midrapidity (|y| < 0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV. The nuclear modification factor R_AA relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC. A large azimuthal anisotropy, v_2, with respect to the reaction plane is observed for 0.5 < p_T < 5 GeV/c indicating non-zero heavy flavor elliptic flow. Both R_AA and v_2 show a p_T dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R_AA(p_T) and v_2(p_T) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.

0 data tables match query