The PHENIX experiment at RHIC has measured the invariant cross section for omega-meson production at mid-rapidity in the transverse momentum range 2.5 < p_T < 9.25 GeV/c in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV. Measurements in two decay channels (omega --> pi^0 pi^+ pi^- and omega --> pi^0 gamma) yield consistent results, and the reconstructed omega mass agrees with the accepted value within the p_T range of the measurements. The omega/pi^0 ratio is found to be 0.85 +/- 0.05(stat) +/- 0.09(sys) and 0.94 +/- 0.08(stat) +/- 0.12(sys) in p+p and d+Au collisions respectively, independent of p_T . The nuclear modification factor R_dA is 1.03 +/- 0.12(stat) +/- 0.21(sys) and 0.83 +/- 0.21(stat) +/- 0.17(sys) in minimum bias and central (0-20%) d+Au collisions, respectively.
Invariant cross section of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV measured in $\omega \rightarrow \pi^0\pi^+\pi^-$ and $\omega \rightarrow \pi^0\gamma$ decay channels.
Invariant cross section of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV measured in $\omega \rightarrow \pi^0\pi^+\pi^-$ and $\omega \rightarrow \pi^0\gamma$ decay channels.
Invariant cross section of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV measured in $\omega \rightarrow \pi^0\pi^+\pi^-$ and $\omega \rightarrow \pi^0\gamma$ decay channels.
We present a measurement of the double longitudinal spin asymmetry in inclusive pi^0 production in polarized proton-proton collisions at sqrt(s)=200 GeV. The data were taken at the Relativistic Heavy Ion Collider with average beam polarizations of 26%. The measurements are the first of a program to study the longitudinal spin structure of the proton, using strongly interacting probes, at collider energies. The asymmetry is presented for transverse momenta 1-5 GeV/c at mid-rapidity, where next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations describe the unpolarized cross section well. The observed asymmetry is small and is compared with a NLO pQCD calculation with a range of polarized gluon distributions.
Double spin asymmetry for the raw signal ($\pi^0 + BG$), for the background ($BG$) and for $\pi^0$ background corrected; single spin asymmetry for $\pi^0$ background corrected; for the four $p_T$ bins.
Single spin raw asymmetry normalized by the beam polarization, $\epsilon$/$P$, as a function of azimuthal angle $\phi$, for forward neutron production.
The measured double spin asymmetry $A^{\pi^0}_{LL}$ versus mean $p_T$ of $\pi^0$s in each bin. Not included in the figure/table: the correlated for all points scale systematic uncertainty of 65% (scales values and stat. uncertainties of points by the same factor).