The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb$^{-1}$, collected with the CMS detector at the CERN LHC, at $\sqrt{s} =$ 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z' mediator produced as a resonance in proton-proton collisions. The mediator decay results in two "semivisible" jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z' has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5-4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.
The normalized distribution of the characteristic variable $R_{\text{T}}$ for the simulated SM backgrounds and several signal models. The requirement on this variable is omitted, but all other preselection requirements are applied. The last bin of each histogram includes the overflow events.
The normalized distribution of the characteristic variable $\Delta\phi_{\text{min}}$ for the simulated SM backgrounds and several signal models. The requirement on this variable is omitted, but all other preselection requirements are applied. The last bin of each histogram includes the overflow events.
The normalized distributions of the BDT input variable $m_{\text{SD}}$ for the two highest $p_{\text{T}}$ jets from the simulated SM backgrounds and several signal models. Each sample's jet $p_{\text{T}}$ distribution is weighted to match a reference distribution (see text). The last bin of each histogram includes the overflow events.
Multiparticle azimuthal correlations of prompt D$^0$ mesons are measured in PbPb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution ($v_2$) of D$^0$ mesons as a function of event centrality and the D$^0$ transverse momentum. The ratios of the four-particle $v_2$ values to previously measured two-particle cumulant results provide direct experimental access to event-by-event fluctuations of charm quark azimuthal anisotropies. These ratios are also found to be comparable to those of inclusive charged particles in the event. However, hints of deviations are seen in the most central and peripheral collisions. To investigate the origin of flow fluctuations in the charm sector, these measurements are compared with models implementing fluctuations of charm quark energy loss via collisional or radiative processes in the quark-gluon plasma. These models cannot quantitatively describe the data over the full transverse momentum and centrality ranges, although the calculations with collisional energy loss provide a better description of the data.
Prompt $D^0+\overline{D}^0$ meson $v_2\{2\}$, $v_2\{4\}$, and $v_2\{4\}/v_2\{2\}$ as a function of $p_T$ from PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
Prompt $D^0+\overline{D}^0$ meson $v_2\{2\}$, $v_2\{4\}$, and $v_2\{4\}/v_2\{2\}$ as a function of $p_T$ from PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
Prompt $D^0+\overline{D}^0$ meson $v_2\{2\}$, $v_2\{4\}$, and $v_2\{4\}/v_2\{2\}$ as a function of centrality from PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
Searches are performed for nonresonant and resonant di-Higgs boson production in the $b\bar{b}\gamma\gamma$ final state. The data set used corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on $pp \rightarrow HH$ nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding $pp \rightarrow HH$ production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier $\kappa_{\lambda}$ are determined to be $[-1.5, 6.7]$ $([-2.4, 7.7])$ at 95% confidence level, where the expected constraints on $\kappa_{\lambda}$ are obtained excluding $pp \rightarrow HH$ production from the background hypothesis. For resonant production of a new hypothetical scalar particle $X$ ($X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$), limits on the cross section for $pp \to X \to HH$ are presented in the narrow-width approximation as a function of $m_{X}$ in the range $251 \leq m_{X} \leq 1000$ GeV. The observed (expected) limits on the cross section for $pp \to X \to HH$ range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.
The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded.
The BDT distribution (with x-axis zoomed in) of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded. The range of BDT scores is from 0.8 to 1.
The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the high mass region ($m^{*}_{b\bar{b}\gamma\gamma} > 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.857 in the high mass region are discarded.
A search for Kaluza-Klein excited vector boson resonances, $W_\mathrm{KK}$, decaying in cascade to three W bosons via a scalar radion $R, W_\mathrm{KK}\to WR \to WWW$, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the $W_\mathrm{KK}$ resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.
Distribution of $m_{\mathrm{jj}}$ for preselected events with $\mathrm{N}_{j}$ = 2
Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 2
Distribution of the deep-WH value of the highest-mass jet with $m_{\mathrm{j}}$ > 100 GeV for preselected events with $\mathrm{N}_{j}$ = 2
A search for long-lived particles decaying into muon pairs is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb$^{-1}$. The data sets used in this search were collected with a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excess of events beyond the standard model expectation is found. Upper limits on branching fractions at 95% confidence level are set on a wide range of mass and lifetime hypotheses in beyond the standard model frameworks with the Higgs boson decaying into a pair of long-lived dark photons, or with a long-lived scalar resonance arising from a decay of a b hadron. The limits are the most stringent to date for substantial regions of the parameter space. These results can be also used to constrain models of displaced dimuons that are not explicitly considered in this paper.
Expected and observed limits at 95% CL on the branching fraction B(hb --> PHI X) . B(PHI --> mu+mu-) as a function of signal mass for signal lifetime of 1 mm
Expected and observed limits at 95% CL on the branching fraction B(hb --> PHI X) . B(PHI --> mu+mu-) as a function of signal mass for signal lifetime of 100 mm
Expected and observed limits at 95% CL on the branching fraction B(H --> ZD ZD) . B(ZD --> mu+mu-) as a function of signal mass for signal lifetime of 1 mm
A search is presented for single production of a vector-like T quark with charge 2/3 $e$, in the decay channel featuring a top quark and a Z boson, with the top quark decaying hadronically and the Z boson decaying to neutrinos. The search uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded at the CERN LHC in 2016-2018. The search is sensitive to a T quark mass between 0.6 and 1.8 TeV with decay widths ranging from negligibly small up to 30% of the T quark mass. Reconstruction strategies for the top quark are based on the degree of Lorentz boosting of its final state. At 95% confidence level, the upper limit on the product of the cross section and branching fraction for a T quark of small decay width varies between 15 and 602 fb, depending on its mass. For a T quark with decay widths between 10 and 30% of its mass, this upper limit ranges between 16 and 836 fb. For most of the studied range, the results provide the best limits to date. This is the first search for single T quark production based on the full Run 2 data set of the LHC.
Product of efficiency and acceptance of the event selection for T signal events as a function of the particle mass $m_\mathrm{T}$ and width $\Gamma$ for the different hypotheses considered.
Product of efficiency and acceptance of the event selection for T signal events as a function of the particle mass $m_\mathrm{T}$ and width $\Gamma$ for the different hypotheses considered.
Product of efficiency and acceptance of the event selection for T signal events as a function of the particle mass $m_\mathrm{T}$ and width $\Gamma$ for the different hypotheses considered.
A search is reported for high-mass hadronic resonances that decay to a parton and a Lorentz-boosted resonance, which in turn decays into a pair of partons. The search is based on data collected with the CMS detector at the LHC in proton-proton collisions at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The boosted resonance is reconstructed as a single wide jet with substructure consistent with a two-body decay. The high-mass resonance is thus considered as a dijet system. The jet substructure information and the kinematic properties of cascade resonance decays are exploited to disentangle the signal from the large quantum chromodynamics multijet background. The dijet mass spectrum is analyzed for the presence of new high-mass resonances, and is found to be consistent with the standard model background predictions. Results are interpreted in a warped extra dimension model where the high-mass resonance is a Kaluza-Klein gluon, the boosted resonance is a radion, and the final state partons are all gluons. Limits on the production cross section are set as a function of the Kaluza-Klein gluon and radion masses. These limits exclude at 95% confidence level models with Kaluza-Klein gluon masses in the range from 2.0 to 4.3 TeV and radion masses in the range from 0.20 to 0.74 TeV. By exploring a novel experimental signature, the observed limits on the Kaluza-Klein gluon mass are extended by up to about 1 TeV compared to previous searches.
Observed upper limits on the product of signal cross section and branching fraction, as a function of the mass ratio $m(\mathrm{R}_{2}) / m(\mathrm{R}_{1})$ vs. $m(\mathrm{R}_{1})$, for a resonance model with three gluons in the final state. The excluded regions from this search (black hatched) are optimized for the decay of a Kaluza--Klein gluon ($\mathrm{G}_{\mathrm{KK}}$) to a gluon ($\mathrm{g}$) and a radion ($\phi$), which in turns decays to two gluons, leading to a final state with three gluons ($\mathrm{ggg}$). The couplings of the model are set to the values $g_{\mathrm{grav}} = 6.0$ and $g_{\mathrm{GKK}} = 3.0$. These excluded regions are compared with those obtained from a reinterpretation of the inclusive CMS dijet resonance search (JHEP 05 (2020) 033), which is more sensitive to the decay channel of $\mathrm{G}_{\mathrm{KK}}$ to a quark-antiquark pair (red hatched). The vertical band between the $m(\mathrm{R}_{1})$ values of $\sim$3.0 and $\sim$3.1 TeV, for $m(\mathrm{R}_{2}) / m(\mathrm{R}_{1}) \lesssim 0.19$, is not excluded by the dijet search because of an upward statistical fluctuation in the observed limit. The white, dashed lines represent a sample of curves corresponding to fixed $m(\mathrm{R}_{2})$ values.
Expected 95% CL upper limits on signal cross section times branching fraction, as a function of the ratio $m(\mathrm{R}_{2})/m(\mathrm{R}_{1})$ vs. $m(\mathrm{R}_{1})$, for a trijet resonance model with 3 gluons in the final state. The limits are optimized for the decay of a Kaluza-Klein gluon ($\mathrm{G}_{\mathrm{KK}}$) to a radion ($\phi$) and a gluon ($\mathrm{g}$) where the radion itself decays to 2 gluons, leading to a final state with 3 gluons ($\mathrm{ggg}$).
Total signal efficiency for each signal hypotheses tested plotted against the ratio between the masses of the two resonances $m(\mathrm{R}_{2})/m(\mathrm{R}_{1})$ and the mass of the first resonance $m(\mathrm{R}_{1})$. The total signal efficiency is defined as the total number of signal events that pass the selection and falls inside the event categories defined in the analysis, divided by the number of generated signal events.
The $B_\mathrm{c}^+$ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the $B_\mathrm{c}^+$ meson in lead-lead (PbPb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV, via the $B_\mathrm{c}^+ \to (J/\psi\to\mu^+\mu^-)\mu^+\nu_\mu$ decay. The $B_\mathrm{c}^+$ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The B$_\mathrm{c}^+$ meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma.
The $B_c$ meson production (pp-equivalent) cross-section times branching fraction of the $B_c\rightarrow (J/\psi \rightarrow \mu\mu) \mu \nu_{\mu}$ decay in pp and PbPb collisions. The used kinematic variables correspond to those of the trimuon final state. The two $p_T$ bins correspond to different rapidity ranges. The total uncertainty is decomposed in an uncertainty from the fit and one representing all other sources. The markers of the $p_T^{\mu\mu\mu}$ bins are placed according to the Lafferty-Wyatt prescription.
The $B_c$ meson nuclear modification factor in PbPb collisions, in $p_T^{\mu\mu\mu}$ bins corresponding to different trimuon rapidity ranges. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The markers of the $p_T^{\mu\mu\mu}$ bins are placed at the average of the Lafferty-Wyatt prescriptions applied to the pp and PbPb spectra.
The $B_c$ meson nuclear modification factor in PbPb collisions, in centrality bins, integrated over the studied kinematic range. The cut on the trimuon rapidity depends on the trimuon $p_T$. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The centrality bin markers are placed at the minimum bias average number of participants $N_{part}$.
Results are presented from a search for physics beyond the standard model in proton-proton collisions at $\sqrt{s} =$ 13 TeV in channels with two Higgs bosons, each decaying via the process H $\to$$\mathrm{b\bar{b}}$, and large missing transverse momentum. The search uses a data sample corresponding to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The search is motivated by models of supersymmetry that predict the production of neutralinos, the neutral partners of the electroweak gauge and Higgs bosons. The observed event yields in the signal regions are found to be consistent with the standard model background expectations. The results are interpreted using simplified models of supersymmetry. For the electroweak production of nearly mass-degenerate higgsinos, each of whose decay chains yields a neutralino ($\tilde{\chi}^0_1$) that in turn decays to a massless goldstino and a Higgs boson, $\tilde{\chi}^0_1$ masses in the range 175 to 1025 GeV are excluded at 95% confidence level. For the strong production of gluino pairs decaying via a slightly lighter $\tilde{\chi}^0_2$ to H and a light $\tilde{\chi}^0_1$, gluino masses below 2330 GeV are excluded.
Predicted background and observed yields vs bin index
Cross section 95% CL upper limit vs m($\widetilde{\chi}^0_1$) for SMS model TChiHH-G.
Theory cross sections vs m($\widetilde{\chi}^0_1$) for SMS model TChiHH-G.
A search for heavy neutral leptons (HNLs), the right-handed Dirac or Majorana neutrinos, is performed in final states with three charged leptons (electrons or muons) using proton-proton collision data collected by the CMS experiment at $\sqrt{s} =$ 13 TeV at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. The HNLs could be produced through mixing with standard model neutrinos $\nu$. For small values of the HNL mass ($\lt$ 20 GeV) and the square of the HNL-$\nu$ mixing parameter (10$^{-7}$-10$^{-2}$), the decay length of these particles can be large enough so that the secondary vertex of the HNL decay can be resolved with the CMS silicon tracker. The selected final state consists of one lepton emerging from the primary proton-proton collision vertex, and two leptons forming a displaced, secondary vertex. No significant deviations from the standard model expectations are observed, and constraints are obtained on the HNL mass and coupling strength parameters, excluding previously unexplored regions of parameter space in the mass range 1-20 GeV and squared mixing parameter values as low as 10$^{-7}$.
Number of predicted and observed events in the $eeX$ final states. The quoted uncertainties include statistical and systematic uncertainties.
Number of predicted and observed events in the $\mu\mu X$ final states. The quoted uncertainties include statistical and systematic uncertainties.
Number of predicted signal events in the $eeX$ final states, for several benchmark signal hypotheses for Majorana HNL. The quoted uncertainties include statistical and systematic uncertainties.