Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Measurement of jet-medium interactions via direct photon-hadron correlations in Au$+$Au and $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Afanasiev, S. ; et al.
Phys.Rev.C 102 (2020) 054910, 2020.
Inspire Record 1798493 DOI 10.17182/hepdata.101752

We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.

14 data tables

Per-trigger yield of hadrons associated to direct photons in Au+Au collisions for direct photon $p_T$ 5-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Per-trigger yield of hadrons associated to direct photons in d+Au collisions for direct photon $p_T$ 7-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Integrated away-side $\gamma_{dir}$-h per-trigger yields of Au+Au, d+Au, and p+p, as a function of $\xi$.

More…

Nuclear-Modification Factor for Open-Heavy-Flavor Production at Forward Rapidity in Cu+Cu Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 86 (2012) 024909, 2012.
Inspire Record 1102910 DOI 10.17182/hepdata.142604

Background: Heavy-flavor production in p+p collisions tests perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p+p results, quantified with the nuclear-modification factor (R_AA), provides information on both cold- and hot-nuclear-matter effects. Purpose: Determine transverse-momentum, pt, spectra and the corresponding R_AA for muons from heavy-flavor mesons decay in p+p and Cu+Cu collisions at sqrt(s_NN)=200 GeV and y=1.65. Method: Results are obtained using the semi-leptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p_T spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte-Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p+p collisions at sqrt{s}=200 GeV, integrated over pt and in the rapidity range 1.4<y<1.9 is found to be dsigma_ccbar/dy = 0.139 +/- 0.029 (stat) ^{+0.051}_{-0.058} (syst) mb. This result is consistent with calculations and with expectations based on the corresponding midrapidity charm-production cross section measured earlier by PHENIX. The R_AA for heavy-flavor muons in Cu+Cu collisions is measured in three centrality intervals for 1<pt<4 GeV/c. Suppression relative to binary-collision scaling (R_AA<1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured heavy-flavor yield in p+p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu+Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.

7 data tables

Production cross section of negative muons from heavy-flavor mesons decay as a function of $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in Cu+Cu collisions for three different centrality intervals (40-94%, 20-40%, and 0-20%), scaled by powers of ten for clarity. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

More…

Measurements of elliptic and triangular flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 115 (2015) 142301, 2015.
Inspire Record 1384274 DOI 10.17182/hepdata.141742

We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

1 data table

Results for $v_2$ and $v_3$ as a function of $p_T$ for inclusive charged hadrons at midrapidity in 0-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.


Quantitative Constraints on the Opacity of Hot Partonic Matter from Semi-Inclusive Single High Transverse Momentum Pion Suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.C 77 (2008) 064907, 2008.
Inspire Record 777211 DOI 10.17182/hepdata.95815

The PHENIX experiment has measured the suppression of semi-inclusive single high transverse momentum pi^0's in Au+Au collisions at sqrt(s_NN) = 200 GeV. The present understanding of this suppression is in terms of energy-loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN^g/dy, the medium transport coefficient <q^hat>, or the initial energy-loss parameter epsilon_0. We find that high transverse momentum pi^0 suppression in Au+Au collisions has sufficient precision to constrain these model dependent parameters at the +/1 20%-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.

1 data table

$\pi^0$ $0-5\%$ centrality


Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

27 data tables

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 0-20%.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 20-40%.

More…

Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

The PHENIX collaboration Afanasiev, S. ; Aidala, Christine Angela ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 100 (2008) 232301, 2008.
Inspire Record 771583 DOI 10.17182/hepdata.140842

A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \tau_0 ~ 9 fm/c and a mean proper emission duration \Delta\tau ~ 2 fm/c, leading to sizable emission time differences (<|\Delta \tau_LCM |> ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in 'burning' of the emission source reminiscent of many hydrodynamical models.

41 data tables

1D correlation function. Systematic errors are less than the statistical errors.

Experimental correlation moments $R^0(q)$ Data. Systematic errors are less than the statistical errors.

Experimental correlation moments $R^0(q)$ Fit. Systematic errors are less than the statistical errors.

More…