Jet structure from dihadron correlations in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 73 (2006) 054903, 2006.
Inspire Record 694429 DOI 10.17182/hepdata.151167

Dihadron correlations at high transverse momentum in d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). From these correlations we extract several structural characteristics of jets; the root-mean-squared (RMS) transverse momentum of fragmenting hadrons with respect to the jet sqrt(<j_T^2>), the mean sine-squared angle between the scattered partons <sin^2(phi_jj)>, and the number of particles produced within the dijet that are associated with a high-p_T particle (dN/dx_E distributions). We observe that the fragmentation characteristics of jets in d+Au collisions are very similar to those in p+p collisions and that there is also little dependence on the centrality of the d+Au collision. This is consistent with the nuclear medium having little influence on the fragmentation process. Furthermore, there is no statistically significant increase in the value of <sin^2(phi_jj)> from p+p to d+Au collisions. This constrains the amount of multiple scattering that partons undergo in the cold nuclear medium before and after a hard-collision.

1 data table match query

Near- and far-side widths and conditional yields as a function of $N_{coll}$ for charged hadron triggers (2.5−4 GeV/$c$) and associated charged hadrons (1–2.5 GeV/$c$) from $d$+Au collisions.


Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

1 data table match query

$v_2$ vs. $p_T$ and $v_2$/($\epsilon * N^{1/3}_{part} * n_q$) vs. ${KE}_T$/$n_q$ for $\pi$/$K$/$p$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV. The values of $v_2$ and $p_T$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV are the same for as figure 14, and the values of $v_2$, $n_q$, and $KE_T$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV are the same for as figure 18.


Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 012301, 2020.
Inspire Record 1762362 DOI 10.17182/hepdata.127978

The first evidence of spin alignment of vector mesons ($K^{*0}$ and $\phi$) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element $\rho_{00}$ is measured at midrapidity ($|y| <$ 0.5) in Pb-Pb collisions at a center-of-mass energy ($\sqrt{s_{\rm NN}}$) of 2.76 TeV with the ALICE detector. $\rho_{00}$ values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum ($p_{\rm T} <$ 2 GeV/$c$) for $K^{*0}$ and $\phi$ at a level of 3$\sigma$ and 2$\sigma$, respectively. No significant spin alignment is observed for the $K^0_S$ meson (spin = 0) in Pb-Pb collisions and for the vector mesons in $pp$ collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination.

1 data table match query

$\rho_{00}$ as a function of $\langle N_{\rm{part}} \rangle$ w.r.t. Production Plane in transverse momentum range 3.0-5.0 GeV/$c$ for $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV.


Higher-order correlations between different moments of two flow amplitudes in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 055203, 2023.
Inspire Record 2654313 DOI 10.17182/hepdata.144824

The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.

1 data table match query

Centrality dependence of ${\rm SC}(3,4)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.


Energy dependence of coherent photonuclear production of J/$\psi$ mesons in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$=5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2023) 119, 2023.
Inspire Record 2666011 DOI 10.17182/hepdata.144758

The cross section for coherent photonuclear production of J/$\psi$ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. Cross sections are presented in five different J/$\psi$ rapidity ranges within $|y|<4$, with the J/$\psi$ reconstructed via its dilepton decay channels. In some events the J/$\psi$ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range $17 < W_{\gamma\, \mathrm{Pb, n}} <920$ GeV, where $W_{\gamma\, \mathrm{Pb, n}}$ is the centre-of-mass energy per nucleon of the $\gamma\,\mathrm{Pb}$ system. This range corresponds to a Bjorken-$x$ interval spanning about three orders of magnitude: $ 1.1\times10^{-5}<x<3.3\times 10^{-2}$. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.

6 data tables match query

Measured coherent J/psi cross section for the 0N0N class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.

Measured coherent J/psi cross section for the 0NXN+XN0N class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.

Measured coherent J/psi cross section for the XN0N forward class. Note that for each rapidity range the 0n0n uncertainty related to migrations is preceded by a ∓, while the other neutron classes have a ±; this means that these uncertainties are anti-correlated.

More…

Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 80 (2009) 024909, 2009.
Inspire Record 819672 DOI 10.17182/hepdata.143606

We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.

1 data table match query

Comparison of the $v_2${BBC} and $v_2${ZDC-SMD} obtained from the S-N and ZDC-BBC-CNT subevents as a function of pT in the 20–60% centrality range.


Event-by-event fluctuations in mean p(T) and mean e(T) in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 66 (2002) 024901, 2002.
Inspire Record 584452 DOI 10.17182/hepdata.143150

Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.

4 data tables match query

The $M_{p_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions.

The residual distribution between the data and mixed event $M_{p_T}$ in units of standard deviations for all centrality classes. The total ${\chi}^2$ and the number of degrees of freedom for the $0-5\%$, $0-10\%$, $10-20\%$, $20-30\%$ centrality classes are 89.0/39, 155.7/40,163.3/47, and 218.4/61, respectively.

The $M_{e_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions. The source of differences in the data and mixed event distributions are addressed in the text.

More…

Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 87 (2013) 054907, 2013.
Inspire Record 1126017 DOI 10.17182/hepdata.142660

Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.

2 data tables match query

$R_{dA}$ ($d$+Au data/scaled $p+p$ fit). Nuclear modification factor for $d$+Au, $R_{dA}$, as a function of $p_{T}$ . The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. The box on the right shows the uncertainty of $T_{dA}$ for $d$+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.

$R_{dA}$ ($d$+Au data/scaled $p+p$ fit). Nuclear modification factor for $d$+Au, $R_{dA}$, as a function of $p_{T}$ . The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. The box on the right shows the uncertainty of $T_{dA}$ for $d$+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.


Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

13 data tables match query

$B$/$A$ ratio from the fit to the data.

$B$/$A$ ratio from the fit to the data.

Parameter $\alpha$ from the fit to the data.

More…

System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

3 data tables match query

Collision centrality, energy, and system size dependence of shape parameters.

Collision centrality, energy, and system size dependence of shape parameters.

Collision centrality, energy, and system size dependence of shape parameters.


Jet properties from dihadron correlations in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 74 (2006) 072002, 2006.
Inspire Record 716897 DOI 10.17182/hepdata.142287

The properties of jets produced in p+p collisions at sqrt(s)=200 GeV are measured using the method of two particle correlations. The trigger particle is a leading particle from a large transverse momentum jet while the associated particle comes from either the same jet or the away-side jet. Analysis of the angular width of the near-side peak in the correlation function determines the jet fragmentation transverse momentum j_T . The extracted value, sqrt(<j_T^2>)= 585 +/- 6(stat) +/- 15(sys) MeV/c, is constant with respect to the trigger particle transverse momentum, and comparable to the previous lower sqrt(s) measurements. The width of the away-side peak is shown to be a convolution of j_T with the fragmentation variable, z, and the partonic transverse momentum, k_T . The <z> is determined through a combined analysis of the measured pi^0 inclusive and associated spectra using jet fragmentation functions measured in e^+e^-. collisions. The final extracted values of k_T are then determined to also be independent of the trigger particle transverse momentum, over the range measured, with value of sqrt(<k_T^2>) = 2.68 +/- 0.07(stat) +/- 0.34(sys) GeV/c.

1 data table match query

Extracted values of $D(x)$ parameters according from the fit to the LEP data and power $n$ of the unmeasured final state parton spectra $\Sigma_q(\bar{p_T})$ extracted from the fit to the single inclusive $\pi^0$ invariant cross section for corresponding fragmentation and fixed values of $\sqrt{<k^2_T>}$ = 2.5 GeV/$c$.


Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

2 data tables match query

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

The performance of jet energy resolution (JER) for jets with |y| < 2.1 evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data. The fit parameters are listed in a sperate table (Extras 1)


Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

1 data table match query

$\langle N_{\rm \gamma} \rangle$ measured within $2.3<\eta_{\rm lab}<3.9$ as a function of collision energy in pp collisions.


Version 2
Strange and Multi-strange Particle Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 62.4 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 024901, 2011.
Inspire Record 871561 DOI 10.17182/hepdata.96847

We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

4 data tables match query

Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.

Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.

Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.

More…

Production of pions, kaons and protons as a function of the transverse event activity in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 027, 2023.
Inspire Record 2626034 DOI 10.17182/hepdata.140124

The production of $\pi^\pm$, ${\rm K}^\pm$, and $(\overline{\rm p})$p is measured in pp collisions at $\sqrt{s}=13$ TeV in different topological regions. Particle transverse momentum ($p_{\rm T}$) spectra are measured in the ``toward'', ``transverse'', and ``away'' angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, $R_{\rm T}=N_{\rm T}/\langle N_{\rm T}\rangle$, is used to group events according to their UE activity, where $N_{\rm T}$ is the measured charged-particle multiplicity per event in the transverse region and $\langle N_{\rm T}\rangle$ is the mean value over all the analysed events. The first measurements of identified particle $p_{\rm T}$ spectra as a function of $R_{\rm T}$ in the three topological regions are reported. The yield of high transverse momentum particles relative to the $R_{\rm T}$-integrated measurement decreases with increasing $R_{\rm T}$ in both the toward and away regions, indicating that the softer UE dominates particle production as $R_{\rm T}$ increases and validating that $R_{\rm T}$ can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing $R_{\rm T}$. This hardening follows a mass ordering, being more significant for heavier particles. The $p_{\rm T}$-differential particle ratios $({\rm p+\overline{p}})/(\pi^+ +\pi^-)$ and $({\rm K^+ +K^-})/(\pi^+ +\pi^-)$ in the low UE limit $(R_{\rm T}\rightarrow 0)$ approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce ${\rm e^+ e^-}$ results.

1 data table match query

$\mathrm{K}^{+}+\mathrm{K}^{-}$ transverse momentum spectrum for events with $2.5 \leq R_{\mathrm{T}} < 5$ in the Toward region in pp collisions at $\sqrt{s} = 13~\mathrm{TeV}$.


Production of K$^{*}(892)^{0}$ and $\phi(1020)$ in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 106 (2022) 034907, 2022.
Inspire Record 1870141 DOI 10.17182/hepdata.140098

The production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV has been measured using the ALICE detector at the Large Hadron Collider (LHC). The transverse momentum ($p_{\mathrm{T}}$) distributions of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons have been measured at midrapidity $(|y|<0.5)$ up to $p_{\mathrm{T}} = 20$ GeV$/c$ in inelastic pp collisions and for several Pb-Pb collision centralities. The collision centrality and collision energy dependence of the average transverse momenta agree with the radial flow scenario observed with stable hadrons, showing that the effect is stronger for more central collisions and higher collision energies. The $\mathrm{K^{*0}/K}$ ratio is found to be suppressed in Pb-Pb collisions relative to pp collisions: this indicates a loss of the measured K$^{*}(892)^{0}$ signal due to rescattering of its decay products in the hadronic phase. In contrast, for the longer-lived $\phi(1020)$ mesons, no such suppression is observed. The nuclear modification factors ($R_{\rm AA}$) of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons are calculated using pp reference spectra at the same collision energy. In central Pb-Pb collisions for $p_{\rm T} > 8$ GeV$/c$, the $R_{\rm AA}$ values of K$^{*}(892)^{0}$ and $\phi(1020)$ are below unity and observed to be similar to those of pions, kaons, and (anti)protons. The $R_{\rm AA}$ values at high $p_{\mathrm T}$ ($>$~8 GeV$/c$) for K$^{*}(892)^{0}$ and $\phi(1020)$ mesons are in agreement within uncertainties for $\sqrt{s_\mathrm{NN}} = 5.02$ and 2.76 TeV.

1 data table match query

$p_{T}$-dependent nuclear modification factor of $\phi$ meson measured in 60-80% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.


Version 2
Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 034911, 2020.
Inspire Record 1755387 DOI 10.17182/hepdata.93739

This article reports measurements of the $p_{\rm{T}}$-differential inclusive jet cross-section in pp collisions at $\sqrt{s}$ = 5.02 TeV and the $p_{\rm{T}}$-differential inclusive jet yield in Pb-Pb 0-10% central collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. Jets were reconstructed at mid-rapidity with the ALICE tracking detectors and electromagnetic calorimeter using the anti-$k_{\rm{T}}$ algorithm. For pp collisions, we report jet cross-sections for jet resolution parameters $R=0.1-0.6$ over the range $20<p_{\rm{T,jet}}<140$ GeV/$c$, as well as the jet cross-section ratios of different $R$, and comparisons to two next-to-leading-order (NLO)-based theoretical predictions. For Pb-Pb collisions, we report the $R=0.2$ and $R=0.4$ jet spectra for $40<p_{\rm{T,jet}}<140$ GeV/$c$ and $60<p_{\rm{T,jet}}<140$ GeV/$c$, respectively. The scaled ratio of jet yields observed in Pb-Pb to pp collisions, $R_{\rm{AA}}$, is constructed, and exhibits strong jet quenching and a clear $p_{\rm{T}}$-dependence for $R=0.2$. No significant $R$-dependence of the jet $R_{\rm{AA}}$ is observed within the uncertainties of the measurement. These results are compared to several theoretical predictions.

2 data tables match query

Fig. 4 Left, data for pp. Unfolded pp and Pb-Pb full jet spectra at $\sqrt{s}=5.02$ TeV for $R=0.2$, with 5 GeV leading track requirement. The pp data points correspond to $\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\mathrm{T,jet}} \mathrm{d}\eta_{\mathrm{jet}}}$.

Fig. 4 Left, data for pp. Unfolded pp and Pb-Pb full jet spectra at $\sqrt{s}=5.02$ TeV for $R=0.2$, with 5 GeV leading track requirement. The pp data points correspond to $\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\mathrm{T,jet}} \mathrm{d}\eta_{\mathrm{jet}}}$.


Measurement of the angle between jet axes in pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 201, 2023.
Inspire Record 2182727 DOI 10.17182/hepdata.138866

This article reports measurements of the angle between differently defined jet axes in pp collisions at $\sqrt{s} = 5.02$ TeV carried out by the ALICE Collaboration. Charged particles at midrapidity are clustered into jets with resolution parameters $R=0.2$ and 0.4. The jet axis, before and after Soft Drop grooming, is compared to the jet axis from the Winner-Takes-All (WTA) recombination scheme. The angle between these axes, $\Delta R_{\mathrm{axis}}$, probes a wide phase space of the jet formation and evolution, ranging from the initial high-momentum-transfer scattering to the hadronization process. The $\Delta R_{\mathrm{axis}}$ observable is presented for $20 < {p_{\mathrm{T}}^{\mathrm{ch\; jet}}}< 100$ GeV/$c$, and compared to predictions from the PYTHIA 8 and Herwig 7 event generators. The distributions can also be calculated analytically with a leading hadronization correction related to the non-perturbative component of the Collins$-$Soper$-$Sterman (CSS) evolution kernel. Comparisons to analytical predictions at next-to-leading-logarithmic accuracy with leading hadronization correction implemented from experimental extractions of the CSS kernel in Drell$-$Yan measurements are presented. The analytical predictions describe the measured data within 20% in the perturbative regime, with surprising agreement in the non-perturbative regime as well. These results are compatible with the universality of the CSS kernel in the context of jet substructure.

1 data table match query

$\Delta R_{\rm axis}$ distribution for Standard$\textendash$SD with grooming setting ($z_{\rm cut}=0.2,\beta=1$) for jets of $R=0.2$, in the interval $40<p_{\rm T}^{\rm ch \ jet}<60 \ {\rm GeV}/c$.


Version 2
Measurement of prompt $\rm{D_{s}^{+}}$-meson production and azimuthal anisotropy in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136986, 2022.
Inspire Record 1946931 DOI 10.17182/hepdata.127980

The production yield and angular anisotropy of prompt ${D_s^+}$ mesons were measured as a function of transverse momentum ($p_{ T}$) in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{ NN}} = 5.02$ TeV collected with the ALICE detector at the LHC. ${D_s^+}$ mesons and their charge conjugates were reconstructed at midrapidity ($|y|<0.5$) from their hadronic decay channel ${D_s^+ \to \phi \pi^+}$, with ${\phi \to K^-K^+}$, in the $p_{ T}$ intervals $2<p_{ T}<50$ GeV/$c$ and $2<p_{ T}<36$ GeV/$c$ for the 0-10% and 30-50% centrality intervals. For $p_{ T}>10$ GeV/$c$, the measured ${D_s^+}$-meson nuclear modification factor $R_{ AA}$ is consistent with the one of non-strange D mesons within uncertainties, while at lower $p_{ T}$ a hint for a ${D_s^+}$-meson $R_{ AA}$ larger than that of non-strange D mesons is seen. The enhanced production of ${D_s^+}$ relative to non-strange D mesons is also studied by comparing the $p_{ T}$-dependent ${D_s^+/D^0}$ production yield ratios in Pb-Pb and in pp collisions. The ratio measured in Pb-Pb collisions is found to be on average higher than that in pp collisions in the interval $2<p_{ T} <8$ GeV/$c$ with a significance of 2.3$\sigma$ and 2.4$\sigma$ for the 0-10% and 30-50% centrality intervals. The azimuthal anisotropy coefficient $v_2$ of prompt ${D_s^+}$ mesons was measured in Pb-Pb collisions in the 30-50% centrality interval and is found to be compatible with that of non-strange D mesons. The main features of the measured $R_{ AA}$, ${D_s^+/D^0}$ ratio, and $v_2$ as a function of $p_{ T}$ are described by theoretical calculations of charm-quark transport in a hydrodynamically expanding quark-gluon plasma including hadronisation via charm-quark recombination with light quarks from the medium. The $p_{ T}$-integrated production yield of ${D_s^+}$ mesons is compatible with the prediction of the statistical hadronisation model.

4 data tables match query

$p_\mathrm{{T}}$-differential prompt $\mathrm{D}_s^+/\mathrm{D}^0$ ratios in Pb-Pb collisions in the 0-10% centrality class at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{TeV}$ divided by those in pp collisions at the same energy.

$p_\mathrm{{T}}$-differential prompt $\mathrm{D}_s^+/\mathrm{D}^0$ ratios in Pb-Pb collisions in the 0-10% centrality class at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{TeV}$ divided by those in pp collisions at the same energy.

$p_\mathrm{{T}}$-differential prompt $\mathrm{D}_s^+/\mathrm{D}^0$ ratios in Pb-Pb collisions in the 30-50% centrality class at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{TeV}$ divided by those in pp collisions at the same energy.

More…

Flow and interferometry results from Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 103 (2021) 034908, 2021.
Inspire Record 1809043 DOI 10.17182/hepdata.95903

The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.

1 data table match query

Beam energy dependence of the directed flow slope dv1=dy at midrapidity for baryons and mesons measured by STAR.


$\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2021-200, 2021.
Inspire Record 1946970 DOI 10.17182/hepdata.136309

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonances has been measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval $-$0.5 $<$$y$$<$ 0 and the transverse momentum spectra are measured for various multiplicity classes up to $p_{\rm T}$ = 20 GeV/$c$ for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $p_{\rm T}$ = 16 GeV/$c$ for $\mathrm{\phi(1020)}$. The $p_{\rm T}$ -integrated yields and mean transverse momenta are reported and compared with previous results in pp, p-Pb and Pb-Pb collisions. The $x_{\mathrm{T}}$ scaling for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonance production is newly tested in p-Pb collisions and found to hold in the high-$p_{\rm T}$ region at LHC energies. The nuclear modification factors ($R_{\rm pPb}$) as a function of $p_{\rm T}$ for $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ at $\sqrt{s_{NN}}$ = 8.16 TeV are presented along with the new $R_{\rm pPb}$ measurements of $\mathrm{K}^{*0}$, $\mathrm{\phi}$ , $\Xi$, and $\Omega$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. At intermediate $p_{\rm T}$ (2-8 GeV/$c$), $R_{\rm pPb}$ of $\Xi$, $\Omega$ show a Cronin-like enhancement, while $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ show no or little nuclear modification. At high $p_{\rm T}$ ($>$ 8 GeV/$c$), the $R_{\rm pPb}$ values of all hadrons are consistent with unity within uncertainties. The $R_{\rm pPb}$ of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ at $\sqrt{s_{\rm NN}}$ = 8.16 and 5.02 TeV show no significant energy dependence.

1 data table match query

$p_{\mathrm T}$-differential $R_{\mathrm{pPb}}$ of $\Omega$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$5.02 TeV.


Multiplicity and rapidity dependence of ${\rm K}^*(892)^0$ and $\phi(1020)$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 540, 2023.
Inspire Record 2070441 DOI 10.17182/hepdata.133031

The transverse-momentum ($p_{\rm T}$) spectra of ${\rm K}^*(892)^0$ and $\phi(1020)$ measured with the ALICE detector up to $p_{\rm T}$ = 16 GeV/$c$ in the rapidity range $-1.2 < y < 0.3$, in p-Pb collisions at the center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented as a function of charged particle multiplicity and rapidity. The measured $p_{\rm T}$ distributions show a dependence on both multiplicity and rapidity at low $p_{\rm T}$ whereas no significant dependence is observed at high $p_{\rm T}$. A rapidity dependence is observed in the $p_{\rm T}$-integrated yield (d$N$/d$y$), whereas the mean transverse momentum ($\left< p_{\rm T} \right>$) shows a flat behavior as a function of rapidity. The rapidity asymmetry ($Y_{\rm asym}$) at low $p_{\rm T}$ ( < 5 GeV/$c$) is more significant for higher multiplicity classes. At high $p_{\rm T}$, no significant rapidity asymmetry is observed in any of the multiplicity classes. Both ${\rm K}^*(892)^0$ and $\phi(1020)$ show similar $Y_{\rm asym}$. The nuclear modification factor ($Q_{\rm CP}$) as a function of $p_{\rm T}$ shows a Cronin-like enhancement at intermediate $p_{\rm T}$, which is more prominent at higher rapidities (Pb-going direction) and in higher multiplicity classes. At high $p_{\rm T}$ (> 5 GeV/$c$), the $Q_{\rm CP}$ values are greater than unity and no significant rapidity dependence is observed.

1 data table match query

$Q_{CP}$ of $\phi$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$5.02 TeV (0-10 %/40-100%).


Measurement of very forward energy and particle production at midrapidity in pp and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 08 (2022) 086, 2022.
Inspire Record 1890061 DOI 10.17182/hepdata.131521

The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p$-$Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at $\sqrt{s}=13$ TeV and in p$-$Pb collisions at $\sqrt{s_{\rm{NN}}}=8.16$ TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used.

16 data tables match query

Average signal on A-side vs. C-side ZN in pp collisions at 13 TeV

Average signal on A-side vs. C-side ZP in pp collisions at 13 TeV

Pb-remnant side ZN signal normalized to MB value vs. ZN centrality percentile in p-Pb collisions at 5.02 TeV

More…

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

1 data table match query

$\phi/K^-$ (a) and $\phi/\Xi^-$ (b) ratio as a function of collision energy, $\sqrt{s_{\mathrm{NN}}}$. The solid black circles show the measurements presented here in 0-10\% centrality bin, while empty markers in black or grey are used for data from various other energies and/or collision systems. The grey solid line represents a THERMUS calculation based on the Grand Canonical Ensemble (GCE) while the dotted lines depict calculations based on the Canonical Ensemble (CE) with different parameters of strangeness correlation radius ($r_c$). The green dashed line, green shaded band and the solid red line show transport model calculations from the public versions $\mathrm{UrQMD}^{1}$, modified $\mathrm{UrQMD}^{2}$ and SMASH, respectively.


Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

1 data table match query

Collision energy dependence of the ratios of cumulants, $C_4/C_2$, for proton (squares) and net-proton (red circles) from top 0-5% Au+Au collisions at RHIC. The points for protons are shifted horizontally for clarity. The new result for proton from $\sqrt{s_{NN}}$ = 3.0 GeV collisions is shown as a filled square. HADES data of $\sqrt{s_{NN}}$ = 2.4 GeV 0-10% collisions is also shown. The vertical black and gray bars are the statistical and systematic uncertainties, respectively. In addition, results from the HRG model, based on both Canonical Ensemble (CE) and Grand-Canonical Ensemble (GCE), and transport model UrQMD are presented.


Measurements of the groomed and ungroomed jet angularities in pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2022) 061, 2022.
Inspire Record 1891385 DOI 10.17182/hepdata.129149

The jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity ($|\eta| < 0.9$). The anti-$k_{\rm T}$ algorithm is used with jet resolution parameters $R=0.2$ and $R=0.4$ for several transverse momentum $p_{\rm T}^{\text{ch jet}}$ intervals in the 20$-$100 GeV/$c$ range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, $\lambda_{\alpha}$, and groomed jet angularities, $\lambda_{\alpha\text{,g}}$, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters $\alpha = 1$, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.

1 data table match query

Groomed jet angularity $\lambda_{\alpha,g}$ for $\alpha = 1.5$. $60<p_{\mathrm{T}}^{\mathrm{ch jet}}<80$, Soft Drop $z_{\mathrm{cut}}=0.2, \beta=0$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).


Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 335, 2022.
Inspire Record 1946828 DOI 10.17182/hepdata.128823

Angular correlations of heavy-flavour and charged particles in high-energy proton-proton collisions are sensitive to the production mechanisms of heavy quarks and to their fragmentation as well as hadronisation processes. The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ALICE detector is reported, considering D$^{0}$, D$^{+}$, and D$^{*+}$ mesons in the transverse-momentum interval $3 < p_{\rm T} < 36$ GeV/$c$ at midrapidity ($|y| < 0.5$), and charged particles with $p_{\rm T} > 0.3$ GeV/$c$ and pseudorapidity $|\eta| < 0.8$. This measurement has an improved precision and provides an extended transverse-momentum coverage compared to previous ALICE measurements at lower energies. The study is also performed as a function of the charged-particle multiplicity, showing no modifications of the correlation function with multiplicity within uncertainties. The properties and the transverse-momentum evolution of the near- and away-side correlation peaks are studied and compared with predictions from various Monte Carlo event generators. Among those considered, PYTHIA8 and POWHEG+PYTHIA8 provide the best description of the measured observables. The obtained results can provide guidance on tuning the generators.

1 data table match query

Comparison of the azimuthal-correlation distributions of D$^{0}$ mesons with $16 < p_{\rm T} < 24$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $13 TeV in four different V0 multiplicity classes, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.


Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136943, 2022.
Inspire Record 1856529 DOI 10.17182/hepdata.128138

Neutral pion ($\pi^{0}$) and $\eta$ meson production cross sections were measured up to unprecedentedly high transverse momenta ($p_{\rm T}$) in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval $-1.3< y <0.3$ in the ranges of $0.4<p_{\rm T}<200$ GeV/$c$ and $1.0<p_{\rm T}<50$ GeV/$c$, respectively. The respective nuclear modification factor ($R_{\rm pPb}$) is presented for $p_{\rm T}$ up to of 200 and 30 GeV/$c$, where the former was achieved by extending the $\pi^{0}$ measurement in pp collisions at $\sqrt{s}$ = 8 TeV using the merged cluster technique. The values of $R_{\rm pPb}$ are below unity for $p_{\rm T}<10$ GeV/$c$, while they are consistent with unity for $p_{\rm T}>10$ GeV/$c$, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

8 data tables match query

Invariant differential cross section of PI0 produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

Invariant differential cross section of PI0 produced in inelastic pp collisions at a centre-of-mass energy of 8 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of ETA produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

More…

Disappearance of partonic collectivity in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 137003, 2022.
Inspire Record 1897294 DOI 10.17182/hepdata.110656

We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{S}^0$, $p$, $\phi$, $\Lambda$ and $\Xi^{-}$) from Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($\pi^{\pm}$, $K^{\pm}$, $p$ and $\overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the $v_{2}$ at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the $v_1$ slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.

26 data tables match query

$v_2$ scaled by the number of constituent quarks, $v_2/n_q$ , as a function of scaled transverse kinetic energy ($(m_T − m_0)/n_q$) for pions, kaons and protons from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}$ = 3, 27, and 54.4 GeV for positive charged particles (left panel) and negative charged particles (right panel). Colored dashed lines represent the scaling fit to data in 7.7, 14.5, 27, 54.4, and 200 GeV Au+Au collisions from STAR experiment at RHIC [43–45]. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points.

$v_2$ scaled by the number of constituent quarks, $v_2/n_q$ , as a function of scaled transverse kinetic energy ($(m_T − m_0)/n_q$) for pions, kaons and protons from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}$ = 3, 27, and 54.4 GeV for positive charged particles (left panel) and negative charged particles (right panel). Colored dashed lines represent the scaling fit to data in 7.7, 14.5, 27, 54.4, and 200 GeV Au+Au collisions from STAR experiment at RHIC [43–45]. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points.

$v_2$ scaled by the number of constituent quarks, $v_2/n_q$ , as a function of scaled transverse kinetic energy ($(m_T − m_0)/n_q$) for pions, kaons and protons from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}$ = 3, 27, and 54.4 GeV for positive charged particles (left panel) and negative charged particles (right panel). Colored dashed lines represent the scaling fit to data in 7.7, 14.5, 27, 54.4, and 200 GeV Au+Au collisions from STAR experiment at RHIC [43–45]. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points.

More…

Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

2 data tables match query

Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.

Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.


Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

1 data table match query

Light nucleus scaled $v_{1}$ slopes as a function os collision energy in 10-40 mid-cantral Au+Au collisions.


Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

1 data table match query

The integrated Global $\Lambda$-hyperon Polarization in mid-central collisions at $\sqrt{s_{\rm NN}}=3$ GeV. The trend of increasing $\overline{P}_{\rm H}$ with decreasing $\sqrt{s_{\rm NN}}$ is maintained at this low collision energy. Previous experimental results are scaled by the updated $\Lambda$-hyperon decay parameter $\alpha_\Lambda=0.732$ for comparison with this result. Recent model calculations extended to low collision energy show disagreement between our data and AMPT and rough agreement with the 3-Fluid Dynamics (3FD) model. Previous measurements shown alongside our data can be found at: https://www.hepdata.net/record/ins750410?version=2; https://www.hepdata.net/record/ins1510474?version=1; https://www.hepdata.net/record/ins1672785?version=2; https://www.hepdata.net/record/ins1752507?version=2.


Version 2
Centrality dependence of identified particles in relativistic heavy ion collisions at sqrt(s)= 7.7-62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 014907, 2016.
Inspire Record 1395151 DOI 10.17182/hepdata.71527

Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.

2 data tables match query

No description provided.

No description provided.


Anisotropic flow of identified hadrons in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2021) 152, 2021.
Inspire Record 1889989 DOI 10.17182/hepdata.114014

Measurements of elliptic ($v_2$) and triangular ($v_3$) flow coefficients of $\pi^{\pm}$, K$^{\pm}$, p+$\rm \overline{p}$, K$^0_{\rm S}$, and $\Lambda + \overline{\Lambda}$ obtained with the scalar product method in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The results are obtained in the rapidity range $\left | y \right |<0.5$ and reported as a function of transverse momentum, $p_{\rm T}$, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for $p_{\rm T}<3$ GeV/$c$, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3< $p_{\rm T}$ <8 GeV/$c$). The magnitude of the baryon $v_{2}$ is larger than that of mesons up to $p_{\rm T}$ = 6 GeV/$c$. The centrality dependence of the shape evolution of the $p_{\rm T}$-differential $v_2$ is studied for the various hadron species. The $v_2$ coefficients of $\pi^{\pm}$, K$^{\pm}$, and p+$\rm \overline{p}$ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for $p_{\rm T} <1$ GeV/$c$. A comparison with $v_{\rm n}$ measurements in the corresponding centrality intervals in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV yields an enhanced $v_2$ in central collisions and diminished value in semicentral collisions.

1 data table match query

$v_2\{2, |\Delta\eta| > 2.0\}$ of ${\rm K}^{0}_{\rm{S}}$ as a function of $p_{\rm T}$ for the 0-5% centrality interval.


K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 84 (2011) 034909, 2011.
Inspire Record 857694 DOI 10.17182/hepdata.102405

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

1 data table match query

Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV


Production of pions, kaons, (anti-)protons and $\phi$ mesons in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 584, 2021.
Inspire Record 1840099 DOI 10.17182/hepdata.110161

The first measurement of the production of pions, kaons, (anti-)protons and $\phi$ mesons at midrapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV is presented. Transverse momentum ($p_{\rm T}$) spectra and $p_{\rm T}$-integrated yields are extracted in several centrality intervals bridging from p-Pb to mid-central Pb-Pb collisions in terms of final-state multiplicity. The study of Xe-Xe and Pb-Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe-Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $\phi$-to-pion ratio with increasing final-state multiplicity.

1 data table match query

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 60-70%.


Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Chin.Phys.C 45 (2021) 044002, 2021.
Inspire Record 872067 DOI 10.17182/hepdata.102351

Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...

1 data table match query

flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2


Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

1 data table match query

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.


Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 092301, 2014.
Inspire Record 1280557 DOI 10.17182/hepdata.105915

We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

3 data tables match query

The efficiency and centrality bin width corrected $\sigma^2/M$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.

The efficiency and centrality bin width corrected $S\sigma^2$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.

The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.


Precise measurement of the mass difference and the binding energy of hypertriton and antihypertriton

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Nature Phys. 16 (2020) 409-412, 2020.
Inspire Record 1731117 DOI 10.17182/hepdata.105279

According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a $\Lambda$ hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the $\Lambda$ hyperon binding energy $B_{\Lambda}$ for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry.

3 data tables match query

Measured Lambda binding energy in the hypertriton compared to earlier results and theoretical calculations (earlier results)

Measured Lambda binding energy in the hypertriton compared to earlier results and theoretical calculations (current STAR measurements)

Measured Lambda binding energy in the hypertriton compared to earlier results and theoretical calculations (theoretical calculations)


Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 034909, 2009.
Inspire Record 793126 DOI 10.17182/hepdata.104931

Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]

6 data tables match query

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

Energy loss effect for $\pi^{+-}$ (a), $K^{+-}$ (b), and p and pbar (c) at mid-rapidity (|y| < 0.1) as a function of particle momentum magnitude in 200 GeV pp and 62.4 GeV central 0-5% Au+Au collisions. Only negative particles are shown; energy loss for particles and antiparticles are the same. Errors shown are statistical only. The pion energy loss is already corrected by the track reconstruction algorithm.

More…

Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 89 (2014) 012001, 2014.
Inspire Record 1253360 DOI 10.17182/hepdata.103061

The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < {\eta} < 2.0 in polarized proton-proton collisions at sqrt{s} = 200 GeV are presented. Neutral pions were detected using the endcap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p_T < 16 GeV/c and is found to be within the scale uncertainty of a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry, A_LL, is measured in the same pseudorapidity range. This quantity is sensitive to the gluonic contribution to the proton spin, {\Delta}g(x), at low Bjorken-x (down to x approx 0.01), where it is less constrained by measurements at central pseudorapidity. The measured A_LL is consistent with model predictions. The parity-violating asymmetry, A_L, is also measured and found to be consistent with zero. The transverse single-spin asymmetry, A_N, is measured within a previously unexplored kinematic range in Feynman-x and p_T. Such measurements may aid our understanding of the on-set and kinematic dependence of the large asymmetries observed at more forward pseudorapidity ({\eta} approx 3) and their underlying mechanisms. The A_N results presented are consistent with a twist-3 model prediction of a small asymmetry within the present kinematic range.

3 data tables match query

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.


Studies of di-jets in Au+Au collisions using angular correlations with respect to back-to-back leading hadrons

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 87 (2013) 044903, 2013.
Inspire Record 1206352 DOI 10.17182/hepdata.103059

Jet-medium interactions are studied via a multi-hadron correlation technique (called "2+1"), where a pair of back-to-back hadron triggers with large transverse momentum is used as a proxy for a di-jet. This work extends the previous analysis for nearly-symmetric trigger pairs with the highest momentum threshold of trigger hadron of 5 GeV/$c$ with the new calorimeter-based triggers with energy thresholds of up to 10 GeV and above. The distributions of associated hadrons are studied in terms of correlation shapes and per-trigger yields on each trigger side. In contrast with di-hadron correlation results with single triggers, the associated hadron distributions for back-to-back triggers from central Au+Au data at $\sqrt{s_{NN}}$=200 GeV show no strong modifications compared to d+Au data at the same energy. An imbalance in the total transverse momentum between hadrons attributed to the near-side and away-side of jet-like peaks is observed. The relative imbalance in the Au+Au measurement with respect to d+Au reference is found to increase with the asymmetry of the trigger pair, consistent with expectation from medium-induced energy loss effects. In addition, this relative total transverse momentum imbalance is found to decrease for softer associated hadrons. Such evolution indicates the energy missing at higher associated momenta is converted into softer hadrons.

1 data table match query

The relative di-jet energy imbalance estimate $\Delta(\Sigma E_{T})^{Au+Au}-\Delta(\Sigma E_{T})^{d+Au}$.


Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 110 (2013) 142301, 2013.
Inspire Record 1210463 DOI 10.17182/hepdata.102939

Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.

47 data tables match query

The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.

The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).

The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).

More…

Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 735 (2014) 127-137, 2014.
Inspire Record 1269346 DOI 10.17182/hepdata.102940

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

1 data table match query

Nuclear modification factor of quarkonium states as a function of binding energy as measured by STAR.


Incident energy dependence of p(t) correlations at RHIC.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 044902, 2005.
Inspire Record 681688 DOI 10.17182/hepdata.102946

We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

4 data tables match query

$<\Delta p_{t,i}\Delta p_{t,j}>$ as a function of centrality and incident energy for Au+Au collisions compared with HIJING results.

(d$N/\textrm{d}\eta)<\Delta p_{t,i}\Delta p_{t,j}>$ as a function of centrality and incident energy for Au+Au collisions compared with HIJING results.

$(<\Delta p_{t,i}\Delta p_{t,j}>)^{1/2}/<<p_{t}>>$ as a function of centrality and incident energy for Au+Au collisions compared with HIJING results.

More…

Inclusive charged hadron elliptic flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 - 39 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 86 (2012) 054908, 2012.
Inspire Record 1119620 DOI 10.17182/hepdata.102951

A systematic study is presented for centrality, transverse momentum ($p_T$) and pseudorapidity ($\eta$) dependence of the inclusive charged hadron elliptic flow ($v_2$) at midrapidity($|\eta| < 1.0$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants ($v_2{4}$), are presented in order to investigate non-flow correlations and $v_2$ fluctuations. We observe that the difference between $v_2{2}$ and $v_2{4}$ is smaller at the lower collision energies. Values of $v_2$, scaled by the initial coordinate space eccentricity, $v_{2}/\varepsilon$, as a function of $p_T$ are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider ($\sqrt{s_{NN}}$ = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV). The $v_2(p_T)$ values for fixed $p_T$ rise with increasing collision energy within the $p_T$ range studied ($< 2 {\rm GeV}/c$). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of $v_{2}(p_{T})$. We also compare the $v_2$ results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.

12 data tables match query

The event plane resolutions for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV as a function of collision centrality.

The comparison of $v_2$ as a function of $p_T$ between GF-cumulant and Q-cumulant methods in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV.

The $p_T$ (> 0.2 GeV/c) and $\eta$ ($∣\eta∣$ < 1) integrated $v_2$ as a function of collision centrality for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.

More…

Measurement of Charge Multiplicity Asymmetry Correlations in High Energy Nucleus-Nucleus Collisions at 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 89 (2014) 044908, 2014.
Inspire Record 1222542 DOI 10.17182/hepdata.100169

A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.

1 data table match query

The relative charge asymmetry correlations, $\langle A_{+}A_{-}\rangle_{ UD}/\langle A_{+}A_{-}\rangle_{ LR}$, as a function of the number of participants, $N_{part}$, for four combinations of $\eta$ ranges used for EP reconstruction and asymmetry calculation.


Centrality dependence of J/$\psi$ and $\psi$(2S) production and nuclear modification in p-Pb collisions at $\sqrt{s_{\rm NN}} =$ 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 02 (2021) 002, 2021.
Inspire Record 1811102 DOI 10.17182/hepdata.100166

The inclusive production of the J/$\psi$ and $\psi$(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 8.16$ TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals $-4.46 < y_{\rm cms} < -2.96$ (Pb-going direction) and $2.03 < y_{\rm cms} < 3.53$ (p-going direction), down to zero transverse momentum ($p_{\rm T}$). The J/$\psi$ and $\psi$(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The $p_{\rm T}$-differential J/$\psi$ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/$\psi$ increases from below unity in peripheral collisions to above unity in central collisions, while for the $\psi$(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.

1 data table match query

The values of $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ of inclusive J/$\psi$ at backward ($-4.46 < y < -2.96$) and forward ($2.03 < y < 3.53$) rapidity calculated from extrapolated cross sections in pp collisions. The uncertainty is the systematic uncertainty. The systematic uncertainty is obtained as the quadratic sum of the uncorrelated and correlated systematic uncertainties. This table refers Fig. 4 of ALICE-PUBLIC-2020-007.


Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at $\sqrt{s_{\rm NN}}$ = 62 and 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 86 (2012) 064902, 2012.
Inspire Record 927960 DOI 10.17182/hepdata.101346

We present two-dimensional (2D) two-particle angular correlations on relative pseudorapidity $\eta$ and azimuth $\phi$ for charged particles from Au-Au collisions at $\sqrt{s_{\rm NN}} = 62$ and 200 GeV with transverse momentum $p_t \geq 0.15$ GeV/$c$, $|\eta| \leq 1$ and $2\pi$ azimuth. Observed correlations include a {same-side} (relative azimuth $< \pi/2$) 2D peak, a closely-related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until mid-centrality where a transition to a qualitatively different centrality trend occurs within a small centrality interval. Above the transition point the number of same-side and away-side correlated pairs increases rapidly {relative to} binary-collision scaling, the $\eta$ width of the same-side 2D peak also increases rapidly ($\eta$ elongation) and the $\phi$ width actually decreases significantly. Those centrality trends are more remarkable when contrasted with expectations of jet quenching in a dense medium. Observed centrality trends are compared to {\sc hijing} predictions and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy ion collision scenarios which invoke rapid parton thermalization. On the other hand, if the collision system is effectively opaque to few-GeV partons the observations reported here would be inconsistent with a minijet picture.

6 data tables match query

FIG. 3. Fit parameters for $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ correlation data from Au-Au collisions at $\sqrt{s_{N N}}=62$ (open symbols) and 200 GeV (solid symbols) versus centrality measure $\nu$ computed at fixed energy $(200 \mathrm{GeV})$. The SS $2 \mathrm{D}$ Gaussian amplitudes, $\eta_{\Delta}$ widths, and $\phi_{\Delta}$ widths are shown in the left, center, and right panels, respectively of the top row. The bottom row shows from left to right the amplitudes for the dipole, quadrupole, and SS peak width aspect ratio $\sigma_{\eta_{\Delta}} / \sigma_{\phi_{\Delta}} .$ Fitting errors are indicated by error bars where larger than the symbols. Solid lines connect the points for clarity. The dotted and dashed curves indicate Glauber linear superposition estimates for 62 - and 200 -GeV peak amplitudes respectively, as discussed in the text. The quadrupole data are consistent with Ref. [60]. The hatched regions indicate the full range of systematic uncertainties listed in Appendix F. The vertical dark bands indicate estimated $v$ equivalents for $N-N$ collisions and $b=0$ Au-Au collisions.

FIG. 3. Fit parameters for $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ correlation data from Au-Au collisions at $\sqrt{s_{N N}}=62$ (open symbols) and 200 GeV (solid symbols) versus centrality measure $\nu$ computed at fixed energy $(200 \mathrm{GeV})$. The SS $2 \mathrm{D}$ Gaussian amplitudes, $\eta_{\Delta}$ widths, and $\phi_{\Delta}$ widths are shown in the left, center, and right panels, respectively of the top row. The bottom row shows from left to right the amplitudes for the dipole, quadrupole, and SS peak width aspect ratio $\sigma_{\eta_{\Delta}} / \sigma_{\phi_{\Delta}} .$ Fitting errors are indicated by error bars where larger than the symbols. Solid lines connect the points for clarity. The dotted and dashed curves indicate Glauber linear superposition estimates for 62 - and 200 -GeV peak amplitudes respectively, as discussed in the text. The quadrupole data are consistent with Ref. [60]. The hatched regions indicate the full range of systematic uncertainties listed in Appendix F. The vertical dark bands indicate estimated $v$ equivalents for $N-N$ collisions and $b=0$ Au-Au collisions.

FIG. 3. Fit parameters for $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ correlation data from Au-Au collisions at $\sqrt{s_{N N}}=62$ (open symbols) and 200 GeV (solid symbols) versus centrality measure $\nu$ computed at fixed energy $(200 \mathrm{GeV})$. The SS $2 \mathrm{D}$ Gaussian amplitudes, $\eta_{\Delta}$ widths, and $\phi_{\Delta}$ widths are shown in the left, center, and right panels, respectively of the top row. The bottom row shows from left to right the amplitudes for the dipole, quadrupole, and SS peak width aspect ratio $\sigma_{\eta_{\Delta}} / \sigma_{\phi_{\Delta}} .$ Fitting errors are indicated by error bars where larger than the symbols. Solid lines connect the points for clarity. The dotted and dashed curves indicate Glauber linear superposition estimates for 62 - and 200 -GeV peak amplitudes respectively, as discussed in the text. The quadrupole data are consistent with Ref. [60]. The hatched regions indicate the full range of systematic uncertainties listed in Appendix F. The vertical dark bands indicate estimated $v$ equivalents for $N-N$ collisions and $b=0$ Au-Au collisions.

More…