High transverse momentum pi0-mesons have been measured with the H1 detector at HERA in deep-inelastic ep scattering events at low Bjorken-x, down to x <~ 4.10^{-5}. The measurement is performed in a region of small angles with respect to the proton remnant in the laboratory frame of reference, namely the forward region, and corresponds to central rapidity in the centre of mass system of the virtual photon and proton. This region is expected to be particularly sensitive to QCD effects in hadronic final states. Differential cross-sections for inclusive pi0-meson production are presented as a function of Bjorken-x and the four-momentum transfer Q^2, and as a function of transverse momentum and pseudorapidity. A recent numerical BFKL calculation and predictions from QCD models based on DGLAP parton evolution are compared with the data.
Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.
Photoproduction data collected with the H1 detector at HERA in 1994 are used to study the cross-sections for inclusive charged particle production and the structure of the photon. The differential cross-sections dsigma/dpT2, for |eta| < 1 in the HERA laboratory frame, and dsigma/deta for pT > 2 GeV/c and pT > 3 GeV/c have been measured. Model calculations of these cross-sections, based on perturbative QCD, indicate that the results are sensitive to the parton densities of the photon as well as to higher order effects, which are phenomenologically treated by multiple interactions. This sensitivity is exploited to determine the leading order x_gamma distribution of partons in the photon using a new method based on high pT charged particles. The gluon content of the photon is extracted and found to rise with decreasing x_gamma.
With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.
Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.
Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken-x and Q^2, and KNO scaling is discussed.
First results on inclusive D0 and D* production in deep inelastic $ep$ scattering are reported using data collected by the H1 experiment at HERA in 1994. Differential cross sections are presented for both channels and are found to agree well with QCD predictions based on the boson gluon fusion process. A charm production cross section for 10GeV$~2\le Q~2\le100$GeV$~2$ and $0.01\le y\le0.7$ of $\sigma\left(ep\rightarrow c\overlinecX\right) = (17.4 \pm 1.6 \pm 1.7 \pm 1.4)$nb is derived. A first measurement of the charm contribution F2_charm(x,Q~2) to the proton structure function for Bjorken $x$ between $8\cdot10~{-4}$ and $8\cdot10~{-3}$ is presented. In this kinematic range a ratio F2_charm/F2= 0.237\pm0.021{+0.043\atop-0.039}$ is observed.
A measurement of inclusive jet cross-sections in deep-inelastic ep scattering at HERA is presented based on data with an integrated luminosity of 21.1 pb^-1. The measurement is performed for photon virtualities Q^2 between 5 and 100 GeV^2, differentially in Q^2, in the jet transverse energy E_T, in E_T^2/Q^2 and in the pseudorapidity eta_lab. With the renormalization scale mu_R = E_T, perturbative QCD calculations in next-to-leading order (NLO) give a good description of the data in most of the phase space. Significant discrepancies are observed only for jets in the proton beam direction with E_T below 20 GeV and Q^2 below 20 GeV^2. This corresponds to the region in which NLO corrections are largest and further improvement of the calculations is thus of particular interest.
The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 11.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.
Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of \ee data. It is shown that certain aspects of the quarks emerging from within the proton in \ep interactions are essentially the same as those of quarks pair-created from the vacuum in \ee annihilation. The measured area, peak position and widthof the fragmentation function show that the kinematic evolution variable, equivalent to the \ee squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in parton showers.