We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
The photoproduction of $D^{*\pm} (2010)$ mesons associated with a leading neutron has been observed with the ZEUS detector in $ep$ collisions at HERA using an integrated luminosity of 80 pb$^{-1}$. The neutron carries a large fraction, {$x_L>0.2$}, of the incoming proton beam energy and is detected at very small production angles, {$\theta_n<0.8$ mrad}, an indication of peripheral scattering. The $D^*$ meson is centrally produced with pseudorapidity {$|\eta|<1.5$}, and has a transverse momentum {$p_{\it T} > 1.9$ GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive $D^*$ production is $8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\%$ in the photon-proton center-of-mass energy range {$130
Integrated cross section. The first DSYS error includes the uncertainty in the luminosity and the second DSYS error is due to the knowledge of the branching ratios.
No description provided.
No description provided.
Triple differential dijet cross sections in e^\pm p interactions are presented in the region of photon virtualities 27GeV, E_T2>5GeV, and pseudorapidities -2.5 < eta_1^*, eta_2^* <0. The measurements are made in the gamma^* p centre-of-mass frame, using an integrated luminosity of 57pb^-1. The data are compared with NLO QCD calculations and LO Monte Carlo programs with and without a resolved virtual photon contribution. NLO QCD calculations fail to describe the region of low Q^2 and low jet transverse energies, in contrast to a LO Monte Carlo generator which includes direct and resolved photon interactions with both transversely and longitudinally polarised photons. Initial and final state parton showers are tested as a mechanism for including higher order QCD effects in low E_T jet production.
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
The eta-prime meson production in the reaction pp-->pp eta-prime has been studied at excess energies of Q = 26.5, 32.5 and 46.6 MeV using the internal beam facility COSY-11 at the cooler synchrotron COSY. The total cross sections as well as one angular distribution for the highest Q-value are presented. The excitation function of the near threshold data can be described by a pure s-wave phase space distribution with the inclusion of the proton-proton final state interaction and Coulomb effects. The obtained angular distribution of the eta-prime mesons is also consistent with pure s-wave production.
Total cross section for the reaction P P --> P P ETAPRIME.
Angular distribution of the ETAPRIME in the CM system at an excess energy of 46.6 MeV. There is an additional systematic error of +24%/-35%.
We have measured the polarization of $\Lambda$ hyperons produced inclusively by a $\Sigma^-$ beam of 340 GeV/c momentum in nuclear targets. From a sample of 9.5 millions of identified $\Lambda$ decays, polarizations were determined in the range $x_F \gt 0.1$ and $p_t\leq 1.6$ GeV/c . The polarization w.r.t. the production normal is mainly positive for $x_F \geq 0.3$. At fixed values of $x_F$, it increases with $p_t$ to a maximum between $p_t = 0.5$ and $p_t = 1$ GeV/c , and then decreases to zero or even negative values, in sharp contrast to the plateau above $p_t = 1$ GeV/c observed in inclusive $\Lambda$ production by protons.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.1 to 0.2.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.2 to 0.3.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.3 to 0.4.
Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.
$\frac{\mathrm{d}N}{\mathrm{d}\eta}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{d}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ for $0-30$% central, $30-60$% central, $60-80$% central, Min.Bias
We report the first inclusive photon measurements about mid-rapidity (|y|<0.5) from Au+Au collisions at sqrt(s_{NN}) = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta(E)/E = 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (pt) spectra of pi0 mesons about mid-rapidity (|y|<1) via the pi0 -> photon photon decay channel. The fractional contribution of the pi0 -> photon photon decay to the inclusive photon spectrum decreases by 20% +/- 5% between pt = 1.65 GeV/c and pt = 2.4 GeV/c in the most central events, indicating that relative to pi0 -> photon photon decay the contribution of other photon sources is substantially increasing.
Data for the electron-positron invariant mass plots
dE/dx deviant distributions of positive daughters
Data for the number of reconstructed photon conversions as a function of conversion location plots
Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $
Panel (a) and (b) show one-dimensional correlation functions for $\pi^+\pi^+$ and $\pi^-\pi^-$. The bottom figures show the three-dimensional correlation function for $\pi^-\pi^-$ with the full Coulomb (open circle) and without Coulomb (filled triangle) corrections for 0.2 < $k_T$ < 2.0 GeV/$c$ for 0-30% centrality. The projection of the 3-D correlation functions are averaged over the lowest 40 MeV in the orthogonal directions. The error bars are statistical only. The lines overlaid on the open circles (filled triangles) correspond to fits to Eq. 1 (Eq. 2) over the entire distribution. Panel (c) shows the one-dimensional correlation function of unlike-signed pions for 0.2 < $k_T$ < 2.0 GeV/$c$. The two overlaid histograms show calculations for the full (dashed) and the 50% partial (solid) Coulomb corrections. $<k_T>$ ~ 0.45 ($\pm$0.17) GeV/$c$ and $<N_{part}>$ ~ 281 ($\pm$4).
The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.
The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.
The photoproduction of beauty quarks in events with two jets and a muon has been measured with the ZEUS detector at HERA using an integrated luminosity of 110 pb$^{- 1}$. The fraction of jets containing b quarks was extracted from the transverse momentum distribution of the muon relative to the closest jet. Differential cross sections for beauty production as a function of the transverse momentum and pseudorapidity of the muon, of the associated jet and of $x_{\gamma}^{jets}$, the fraction of the photon's momentum participating in the hard process, are compared with MC models and QCD predictions made at next-to-leading order. The latter give a good description of the data.
No description provided.
No description provided.
No description provided.