We have measured the cross section for production of ψ and ψ′ in p¯ and π− interactions with Be, Cu, and W targets in experiment E537 at Fermilab. The measurements were performed at 125 GeV/c using a forward dimuon spectrometer in a closed geometry configuration. The gluon structure functions of the p¯ and π− have been extracted from the measured dσdxF spectra of the produced ψ's. From the p¯W data we obtain, for p¯, xG(x)=(2.15±0.7)[1−x](6.83±0.5)[1+(5.85±0.95)x]. In the π− case, we obtain, from the W and the Be data separately, xG(x)=(1.49±0.03)[1−x](1.98±0.06) (for π−W), xG(x)=(1.10±0.10)[1−x](1.20±0.20) (for π−Be).
No description provided.
No description provided.
No description provided.
The production of Λ 's and Ξ − 's in proton-antiproton collisions at 200 and 900 GeV c.m. energy has been studied using decays observed in the UA5 streamer chambers. The results are compared to previously published 546 GeV data, to results from other experiments, and to four theoretical models. The Λ yield per inelastic event is estimated to be 0.42±0.11 at 200 GeV and 0.66±0.14 at 900 GeV. We find a mean number of Ξ − 's per inelastic collision of 0.03 −0.02 +0.04 at 200 GeV and 0.06 −0.03 +0.05 at 900 GeV. The average transverse momentum of Λ's in the rapidity region | y |⩽2 is found to be 0.80 −0.14 +0.20 GeV/ c at 200 GeV and 0.74±0.09 GeV/ c at 900 GeV. The average transverse momentum of Ξ − 's in the rapidity region | y |⩽3 is estimated to be 0.8 −0.2 +0.4 GeV/ c at 200 GeV and 0.7 −0.1 +0.2 GeV/ c at 900 GeV which is lower than the unexpectedly high value of 1.1±0.2 GeV/ c measured at 546 GeV. The ratio of Ξ − production to Λ production in the region | y |⩽2, p t >1 GeV/ c is 0.07 −0.04 +0.08 at 900 GeV. This value is consistent with the ratio found in e + e − collisions and lower energy pp collisions but lower than the value obtained at 546 GeV. The average particle composition of events at 200 and 900 GeV, estimated using UA5 data, is presented.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
We have begun a program to measure dielectron production in p-nucleus and nucleus-nucleus collisions at the LBL Bevalac. Results are presented for the reaction p+Be at 4.9 GeV. For the first time, direct dilepton production is observed below 10 GeV incident energy. The cross sections are discussed and compared to previous data at higher energies. The observation of a structure at a mass of about 275 MeV suggests that pion annihilation may be the dominant production mechanism in this mass range.
A IS TARGET ATOMIC MASS NUMBER.
A IS TARGET ATOMIC MASS NUMBER.
None
THE BETTER FIT FOR PI- AND BARIONBAR IS THE SUM OF TWO EXPONENT: A*EXP(-B1*PT**2)+D*EXP(-B2*PT**2).FOR PI- B1=30+-4 AND B2=6.3+-.3 .FOR BARIONBAR B1=46+-18 AND B2=3.9+-.5.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.
No description provided.
No description provided.
No description provided.
Data are presented on inclusive π0 production in the forward c.m. hemisphere (xF>0.025) in π+p,K+p andpp interactions at 250 GeV/c. These data are compared to results at other energies and interpreted in terms of quark-parton models.
.
.
.