Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $0.5 \GeVc \leq p \le 8.0 \GeVc$ and angle $0.025 \rad \leq \theta \le 0.25 \rad$ in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections $ {{\mathrm{d}^2 \sigma}}/{{\mathrm{d}p\mathrm{d}\Omega}} $ mainly at four incident pion beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared with the GEANT4 and MARS Monte Carlo simulation
Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.05 to 0.10 radians.
Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.10 to 0.15 radians.
Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.15 to 0.20 radians.
The production of $\omega$ mesons in the $pd \to{}^3$He$ \omega$ reaction has been studied at two energies near the kinematic threshold, $T_p=1450$ MeV and $T_p=1360$ MeV. The differential cross section was measured as a function of the $\omega$ cm angle at both energies over the whole angular range. Whereas the results at 1360 MeV are consistent with isotropy, strong rises are observed near both the forward and backward directions at 1450 MeV. Calculations made using a two-step model with an intermediate pion fail to reproduce the shapes of the measured angular distributions and also underestimate the total cross sections.
Total cross sections.
Differential cross section at 1450 MeV.
Differential cross section at 1360 MeV.
The cross section for inclusive multipion production in the pp->ppX reaction was measured at COSY-ANKE at four beam energies, 0.8, 1.1, 1.4, and 2.0 GeV, for low excitation energy in the final pp system, such that the diproton quasi-particle is in the 1S0 state. At the three higher energies the missing mass Mx spectra show a strong enhancement at low Mx, corresponding to an ABC effect that moves steadily to larger values as the energy is increased. Despite the missing-mass structure looking very different at 0.8 GeV, the variation with Mx and beam energy are consistent with two-pion production being mediated through the excitation of two Delta(1232) isobars, coupled to S-- and D-- states of the initial pp system.
The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 0.8 GeV.
The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 1.1 GeV.
The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 1.4 GeV.
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| < 0.6, with M(mumu) in [3.0,4.0] GeV/c2, and either no other particles, or one additional photon, detected. The J/psi and the psi(2S) are prominent, on a continuum consistent with the QED process gamma+gamma --> mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L.
Prompt J/psi cross section from exclusive photoproduction at mid rapidity.
Prompt Psi(2S) cross section from exclusive photoproduction at mid rapidity.
Prompt photoproduction cross-section ratio Psi(2S)/(J/psi) at mid rapidity.
The ZZ production cross section is measured from a data sample corresponding to a total integrated luminosity of 452 pb(-')(1), collected by the ALEPH experiment at LEP at centre-of-mass energies from 192 to 209 GeV. Individual cross sections, ext racted at six centre-of-mass energies, are found to be in agreement with Standard Model calculations. The results are used to set limits on anomalous neutral gauge couplings.
Measured E+ E- --> Z0 Z0 cross sections.
First measurements of the differential cross sections for the inclusive production of a photon in association with a heavy quark (c, b) jet are presented, covering photon transverse momenta 30-150 GeV, photon rapidities | y_gamma| < 1.0, jet rapidities |y_jet| < 0.8, and jet transverse momenta pT_jet > 15 GeV. The results are based on an integrated luminosity of 1 fb^-1 in ppbar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider. The results are compared with next-to-leading order perturbative QCD predictions.
Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for (GAMMA CJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.
We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.
Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.
Events with high energy isolated electrons, muons or tau leptons and missing transverse momentum are studied using the full e^\pm p data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^{-1}. Within the Standard Model, events with isolated leptons and missing transverse momentum mainly originate from the production of single W bosons. The total single W boson production cross section is measured as 1.14 \pm 0.25 (stat.) \pm 0.14 (sys.) pb, in agreement with the Standard Model expectation. The data are also used to establish limits on the WW\gamma gauge couplings and for a measurement of the W boson polarisation.
Total single W boson production cross section.
Differential single W boson production cross section.
The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.
Production cross section for (D+ + D-) mesons.
Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.
Measured D+- cross section as a function of Q**2.
A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.