Date

Amplitude Analysis of the K0(s) K0(s) System Produced in the Reaction pi- p ---> K0(s) K0(s) n at 23-GeV/c

Etkin, A. ; Foley, K.J. ; Longacre, R.S. ; et al.
Phys.Rev.D 25 (1982) 1786, 1982.
Inspire Record 169729 DOI 10.17182/hepdata.24030

We have carried out an amplitude analysis of the KS0KS0 system produced in the reaction π−p→KS0KS0n at 23 GeV/c, based on about 15 000 events in the low-t region (|t−tmin|<0.1 GeV2). Below 1.6 GeV/c2, our favored solution is very similar to those from previous analyses. For higher masses, we observe the KS0KS0 decay of the h(2040) meson. In addition, the l=0 partial wave contains a new state, strongly coupled to KS0KS0, with parameters M=1.771−0.053+0.077 GeV/c2 and Γ=0.200−0.009+0.156 GeV/c2. Since this state is most probably I=0, we call it the S*′(1770). We find an f′f production ratio of 0.23−0.13+0.14, and branching ratios for f-meson and h(2040)-meson decays into KK¯ of (3.1−1.7+0.7)% and (0.67−0.15+0.41)%, respectively. We find, in a detailed comparison of our results with those from other experiments, that our solution is compatible with all known features of both charged and neutral KK¯ systems.

1 data table

No description provided.


A Study of K+ pi- Elastic Scattering in the Reaction K+ n --> K+ pi- p Between 2.0-GeV/c and 3.0-GeV/c

Baker, S.L. ; Banerjee, S. ; Campbell, J.R. ; et al.
Nucl.Phys.B 99 (1975) 211, 1975.
Inspire Record 655 DOI 10.17182/hepdata.31833

Results are given from a study of 15 518 events of the reaction K + d → K + π − pp. The K + π − spin density matrix and the constraints imposed on it by positivity have been studied. Analyses of K + π − → K + π − elastic scattering have been carried out using methods developed by Estabrooks and Martin and Ochs and Wagner for the analogous case of ππ scattering. Results are found to be in agreement with earlier K π scattering studies using the reaction K + p → K + π − Δ ++ at much higher energies. The S-wave scattering length is found to be in agreement with the prediction of current algebra.

1 data table

No description provided.