Multi - Hadronic Events at E(c.m.) = 29-GeV and Predictions of QCD Models from E(c.m.) = 29-GeV to E(c.m.) = 93-GeV

Petersen, A. ; Abrams, G.S. ; Adolphsen, Chris ; et al.
Phys.Rev.D 37 (1988) 1, 1988.
Inspire Record 246184 DOI 10.17182/hepdata.4114

Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.

74 data tables

Aplanarity distribution.

QX Distribution(QX=SQRT(3)*(Q3-Q2)).

The (Q2-Q1) distribution.

More…

Studies of inclusive four-jet production with two b-tagged jets in proton-proton collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 112005, 2016.
Inspire Record 1486238 DOI 10.17182/hepdata.75375

Measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 inverse picobarns. The cross section is measured as a function of the jet transverse momentum for pt > 20 GeV, and of the jet pseudorapidity for abs(eta) < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pt between the jets are also studied. The inclusive cross section is measured to be sigma(pp to 2 b + 2 j + X) = 69 +/- 3 (stat) +/- 24 (syst) nb. The eta and pt distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.

12 data tables

The measured fiducial cross section. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the leading b-jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the subleading b-jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

More…

Measurement of the differential cross sections for top quark pair production as a function of kinematic event variables in pp collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052006, 2016.
Inspire Record 1473674 DOI 10.17182/hepdata.74124

Measurements are reported of the normalized differential cross sections for top quark pair production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum (pT); the scalar sum of the pT of all objects in the event; and the pT of leptonically decaying W bosons from top quark decays. The data sample, collected using the CMS detector at the LHC, consists of 5.0 inverse femtobarns of proton-proton collisions at sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. Top quark pair events containing one electron or muon are selected. The results are presented after correcting for detector effects to allow direct comparison with theoretical predictions. No significant deviations from the predictions of several standard model event simulation generators are observed.

16 data tables

Normalized $t\bar{t}$ differential cross section measurements with respect to the $E^{miss}_{T}$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $H_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $S_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

More…

Measurement of the differential cross section and charge asymmetry for inclusive pp to W + X production at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 469, 2016.
Inspire Record 1426517 DOI 10.17182/hepdata.73900

The differential cross section and charge asymmetry for inclusive pp to W + X to mu + neutrino + X production at sqrt(s) = 8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 inverse femtobarns recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1.

6 data tables

Summary of the measured differential cross section $d\sigma^{+}/d\eta$. The theoretical predictions are obtained using the FEWZ 3.1 NNLO MC tool interfaced with five different PDF sets.

Summary of the measured differential cross section $d\sigma^{-}/d\eta$. The theoretical predictions are obtained using the FEWZ 3.1 NNLO MC tool interfaced with five different PDF sets.

Summary of the measured charge asymmetry $\mathcal{A}$. The theoretical predictions are obtained using the FEWZ 3.1 NNLO MC tool interfaced with five different PDF sets.

More…

Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 092001, 2017.
Inspire Record 1491950 DOI 10.17182/hepdata.76554

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.

164 data tables

Absolute cross section at particle level.

Covariance matrix of absolute cross section at particle level.

Absolute cross section at particle level.

More…

Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at sqrt(s) = 8 TeV using H to WW decays

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 03 (2017) 032, 2017.
Inspire Record 1467451 DOI 10.17182/hepdata.77058

The cross section for Higgs boson production in pp collisions is studied using the H to WW decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 inverse femtobarns. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 +/- 8 (stat) +/- 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model.

3 data tables

The fiducial differential cross section in each Higgs pT bin. The first uncertainty is the total (stat+syst) uncertainty. The second is the statistical uncertainty and the third and fourth are Type A and Type B systematic uncertainties, respectively. The last one is the model dependence uncertainty (Type C).

The measured total cross section in the fiducial region. The first systematic uncertainty is the statistical uncertainty and the second is the systematic.

Correlation matrix among the Higgs pT bins of the differential spectrum.


Measurements of the associated production of a Z boson and b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 751, 2017.
Inspire Record 1499471 DOI 10.17182/hepdata.77544

Measurements of the associated production of a Z boson with at least one jet originating from a b quark in proton-proton collisions at sqrt(s) = 8 TeV are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8 inverse femtobarns. Z bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the b jet and the Z boson. Ratios of differential cross sections for the associated production with at least one b jet to the associated production with any jet are also presented. The production of a Z boson with two b jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.

20 data tables

Differential fiducial cross section for Z(1b) production as a function of the leading b jet pT

Cross section ratio for Z(1b) and Z+jets production as a function of the leading b/inclusive (j) jet pT

Differential fiducial cross section for Z(1b) production as a function of the leading b jet |eta|

More…

Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 780 (2018) 251-272, 2018.
Inspire Record 1633431 DOI 10.17182/hepdata.85744

Differential production cross sections of J/$\psi$ and $\psi$(2S) charmonium and $\Upsilon$(nS) (n = 1, 2, 3) bottomonium states are measured in proton-proton collisions at $\sqrt{s} =$ 13 TeV, with data collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$ for the J/$\psi$ and 2.7 fb$^{-1}$ for the other mesons. The five quarkonium states are reconstructed in the dimuon decay channel, for dimuon rapidity $|y| <$ 1.2. The double-differential cross sections for each state are measured as a function of $y$ and transverse momentum, and compared to theoretical expectations. In addition, ratios are presented of cross sections for prompt $\psi$(2S) to J/$\psi$, $\Upsilon$(2S) to $\Upsilon$(1S), and $\Upsilon$(3S) to $\Upsilon$(1S) production.

12 data tables

Double-differential cross section times the dimuon branching fraction of the J/psi meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the psi(2S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the Y(1S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

More…

Measurements of $W$ and $Z/\gamma^*$ cross sections and their ratios in $p+p$ collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 103 (2021) 012001, 2021.
Inspire Record 1829350 DOI 10.17182/hepdata.99055

We report on the $W$ and $Z/\gamma^*$ differential and total cross sections as well as the $W^+$/$W^-$ and $(W^+ + W^-)$/$(Z/\gamma^*)$ cross-section ratios measured by the STAR experiment at RHIC in $p+p$ collisions at $\sqrt{s} = 500$ GeV and $510$ GeV. The cross sections and their ratios are sensitive to quark and antiquark parton distribution functions. In particular, at leading order, the $W$ cross-section ratio is sensitive to the $\bar{d}/\bar{u}$ ratio. These measurements were taken at high $Q^2 \sim M_W^2,M_Z^2$ and can serve as input into global analyses to provide constraints on the sea quark distributions. The results presented here combine three STAR data sets from 2011, 2012, and 2013, accumulating an integrated luminosity of 350 pb$^{-1}$. We also assess the expected impact that our $W^+/W^-$ cross-section ratios will have on various quark distributions, and find sensitivity to the $\bar{u}-\bar{d}$ and $\bar{d}/\bar{u}$ distributions.

7 data tables

Differential cross sections, $d\sigma^{fid}_{W^+}/d\eta_{e^+}$, binned in $e^+$ pseudorapidity bins, requiring that $-1 < \eta_e < 1.5$ and $25$ GeV $< E^e_{T} < 50$ GeV. The values labeled 'stat.' and 'eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 5\% uncertainty in the tracking efficiency, which is common to all the measurements. The value 'sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

Differential cross sections, $d\sigma^{fid}_{W^-}/d\eta_{e^-}$, binned in $e^-$ pseudorapidity bins, requiring that $-1 < \eta_e < 1.5$ and $25$ GeV $< E^e_{T} < 50$ GeV. The values labeled ``stat.' and ``eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 5\% uncertainty in the tracking efficiency, which is common to all the measurements. The value ``sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

Differential cross sections, $d\sigma^{fid}_{Z}/dy_Z$, binned in rapidity bins, requiring that $|\eta_e|<1$, $|y_Z| < 1$, $p^e_T > 15$ GeV, and $ 70$ GeV $< M_Z < 110$ GeV. The values labeled 'stat.' and 'eff.' represent the statistical uncertainty and the systematic uncertainty estimated from the efficiencies, respectively. The later is dominated by the 10\% uncertainty in the tracking efficiency, which is common to all the measurements. The value 'sys.' includes all remaining systematic uncertainties, with the exception of the luminosity. The 9\% uncertainty associated with the luminosity measurement is labeled as 'lumi'.

More…

Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…