Version 4
Search for Higgs boson pair production in the two bottom quarks plus two photons final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 106 (2022) 052001, 2022.
Inspire Record 1995886 DOI 10.17182/hepdata.105864

Searches are performed for nonresonant and resonant di-Higgs boson production in the $b\bar{b}\gamma\gamma$ final state. The data set used corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on $pp \rightarrow HH$ nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding $pp \rightarrow HH$ production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier $\kappa_{\lambda}$ are determined to be $[-1.5, 6.7]$ $([-2.4, 7.7])$ at 95% confidence level, where the expected constraints on $\kappa_{\lambda}$ are obtained excluding $pp \rightarrow HH$ production from the background hypothesis. For resonant production of a new hypothetical scalar particle $X$ ($X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$), limits on the cross section for $pp \to X \to HH$ are presented in the narrow-width approximation as a function of $m_{X}$ in the range $251 \leq m_{X} \leq 1000$ GeV. The observed (expected) limits on the cross section for $pp \to X \to HH$ range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.

31 data tables

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded.

The BDT distribution (with x-axis zoomed in) of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded. The range of BDT scores is from 0.8 to 1.

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the high mass region ($m^{*}_{b\bar{b}\gamma\gamma} > 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.857 in the high mass region are discarded.

More…

Measurement of the inclusive cross-sections of single top-quark and top-antiquark $t$-channel production in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2017) 086, 2017.
Inspire Record 1486394 DOI 10.17182/hepdata.81947

A measurement of the $t$-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+je ts channel is presented, using 3.2 fb$^{-1}$ of proton--proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be $b$-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma(tq) = 156 \pm 5 \, (\mathrm{stat.}) \pm 27 \, (\mathrm{syst.}) \pm 3\,(\mathrm{lumi.})$ pb for single top-quark production and $\sigma(\bar{t}q) = 91 \pm 4 \, (\mathrm{stat.}) \pm 18 \, (\mathrm{syst.}) \pm 2\,(\mathrm{lumi.})$ pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be $R_t = \sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09 \, (\mathrm{stat.}) \pm 0.18 \, (\mathrm{syst.})$.

5 data tables

Predicted and observed event yields for the signal region. The quoted uncertainties include uncertainties in the theoretical cross-sections, in the number of multijet events, and the statistical uncertainties. The event yield of the $W^+ + $jets process in the $\ell^-$ channel is reported to be $<1$ in the paper. To provide a numerical value for this table in HEPdata, the yield is approximated with $1\pm 1$. The same is done for the event yield of the $W^- + $jets process in the $\ell^+$ channel.

Estimated scale factors, $\hat{\beta}$, and number of events, $\hat{\nu}=\hat{\beta}\cdot\nu$, for the $\ell^+$ and $\ell^-$ channel from the minimisation of the likelihood function. The quoted uncertainties in $\hat{\beta}$ and $\hat{\nu}$ include the statistical uncertainty and the uncertainties from the constraints on the background normalisation as used in the likelihood function.

Measured total cross sections of single top-quark and single top-antiquark production and their ratio $R_t$. In addition, the sum of top-quark and top-antiquark production is provided as well. Based on the total cross section the value of $f_\mathrm{LV}\cdot |V_{tb}|$ is determined.

More…