We have measured the scale invariant inclusive photon and π0 cross sections atW=14, 22 and 34 GeV. A comparison with π± data shows no significant difference between neutral and charged pion production. Comparing the integrated cross sections in thex range 0.15<x<1.0 we observe a considerable decrease from 14 GeV to 34 GeV with a statistical significance of 1.5 standard deviations. This is compatible with the expectations for scaling violations from QCD.
NUMERICAL VALUES OF DATA SUPPLIED BY H. OBERLACK.
NUMERICAL VALUES OF DATA SUPPLIED BY H. OBERLACK.
NUMERICAL VALUES OF DATA SUPPLIED BY H. OBERLACK.
Inclusive cross sections forΔ++ production inpp interactions at different ISR energies are presented. The differential cross sectiondσ/dx forΔ++ production is found to be approximately independent of Feynmanx. No strong energy dependence is seen over the ISR energy range. The topological cross sections ofΔ++ at\(\sqrt s= 62\) GeV show an appreciable contribution from non-diffractive production mechanisms. An upper limit for theΔ0 production cross section is determined.
No description provided.
No description provided.
No description provided.
The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilation has been measured at c.m. energies ofW=14, 22 and 34GeV. Using time of flight measurements and Cerenkov counters the full momentum range has been covered. Differential cross sections and total particle yields are given. At particle momenta of 0.4 GeV/c more than 90% of the charged hadrons are pions. With increasing momentum the fraction of pions among the charged hadrons decreases. AtW=34 GeV and a momentum of 5 GeV/c the particle fractions are approximately π±:K±:p,\(\bar p = 0.55:0.3:0.15\). On average an event atW=34 GeV contains 10.3±0.4π±, 2.0±0.2K± and 0.8±0.1p,\(\bar p\). In addition, we present results on baryon correlations using a sample of events where two or more protons and/or antiprotons are observed in the final state.
No description provided.
No description provided.
No description provided.
We have observed ϱ 0 production in e + e − annihilation to hadrons at high energies. The differential cross section at a centre of mass energy W , of 34 GeV, is presented. In the range 0.2< x < 0.7, we measure 0.33 ± 0.06 (stat.) ± 0.07 (syst.), 0.22 ± 0.06 ± 0.05 and 0.22 ± 0.02 ± 0.05 ϱ 0 /event at W = 14, 22 and 34 GeV respectively.
No description provided.
No description provided.
INTEGRATION OVER RESTRICTED X RANGE.
The scale cross section s d σ d x p for inclusive charged-particle production in e + e − annihilation has been studied for c.m. energies W between 12.0 and 36.7 GeV. Scale breaking is observed. For x p >0.2 the cross section decreases by ≈20% when W increases from 14 to 35 GeV. The production angular distribution was used to separate the longitudinal and transverse cross-section contributions and to determine the ratio of the structure functions m W 1 and v W 2 .
DATA FROM TABLE 1A IN PREPRINT DESY-82-013.
DATA FROM TABLE 1B IN PREPRINT DESY-82-013.
DATA FROM TABLE 1C IN PREPRINT DESY-82-013. TOTAL CROSS SECTION TAKEN FROM EARLIER TASSO MEASUREMENTS, PL 113B, 499. NORMALIZED CROSS SECTION IS NOT SUBJECT TO THE 4.5 PCT NORMALIZATION ERROR AND A POSSIBLE 2-3 PCT CONTRIBUTION FROM THE WEAK NEUTRAL CURRENT IS TAKEN CARE OF.
The photonic part of multihadronice+e− annihilation events has been analyzed at a c.m. energy of 34 GeV. The photonic energy fraction per event is determined to befγ=0.251±0.003 (stat.) ±0.04 (syste.). The neutral and charged components of the events are analyzed separately revealing close similarity in thrust axis directions and momentum distributions in agreement with the hypothesis that most photons result from π0 decay. π0's are reconstructed separately and used to determine the inclusive cross section. Comparing these cross sections with lower energy data from SPEAR we find some indication for scaling violation.
No description provided.
No description provided.
The inclusive production of π ± mesons in e + e − annihilation has been measured at c.m. energies of 14, 22 and 34 GeV for pion momenta between 0.3 ans 10 GeV/ c . The fraction of pions among the charged hadrons is above 90% at 0.4 GeV/ c and decreases to about 50% at high momenta. The scaled cross sections ( s β ) d σ d x at 14, 22 and 34 GeV as well as the 5.2 GeV data from DASP have a rather similar x dependence. After integration over the x range from 0.2 to 0.6 the cross sections indicate a monotonic decrease with increasing centre-of-mass energy.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.
The process e + e − → π 0 + anything has been measured at c.m. energies of 14 and 34 GeV for π 0 energies between 0.5 and 4 GeV. The ratio of π 0 to π ± production for π momenta between 0.5 and 1.5 GeV/ c is measured to be 2 σ ( π 0 )/ [ σ ( π + ) + σ ( π − )] = 1.3 ± 0.4 (1.2 ± 0.4) at 14 (34) GeV. The scaled cross section ( s / μ )d σ /d x when compared with lower energy (4.9–7.4 GeV) π 0 data indicates a substantial scaling violation.
COMPARISON OF PI0 WITH CHARGED PION CROSS SECTIONS (SCALED BI 1/S TO SAME ENERGIES).
No description provided.
No description provided.
Results on inclusive K s 0 production in e + e − annihilation at mean center-of-mass energies of 9.4, 12.0 and 30 GeV are presented. The ratio R (K 0 ) = 2 σ (K s 0 )/ σ μμ rises from 3.10 ± 0.75 at √ s = 9.4 GeV to 5.6 ± 1.2 at √ s = 30 GeV, corresponding to an approximately constant K 0 /charged-particle ratio of 0.12 ± 0.02. A similar ratio for K 0 / charged particle is observed for direct hadronic decays of the ϒ.
SYSTEMATIC ERROR INCLUDED.
NUMBER OF K0 PER HADRONIC EVENT. AUTHORS ALSO USE MULTIPLICITY TO ESTIMATE NUMBER OF K0 PER CHARGED PARTICLE.
INCLUDING EARLIER DATA.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.