The branching ratio for the leptonic decay of charged B mesons ( B − →τ − ν ̄ τ ) has been measured using selected leptonic τ − →ℓ − ν τ ν ̄ ℓ and hadronic τ − → ν τ X decays in Z → b b ̄ decays recorded by DELPHI at LEP1 in 1992–1995. The result, BR ( B − →τ − ν ̄ τ )<1.1×10 −3 at the 90% confidence level, is consistent with standard model expectations and puts a constraint on the ratio tan β / M H ± <0.46 (GeV/ c 2 ) −1 in the framework of models with two Higgs doublets (type II Higgs doublet model). From the missing energy distribution in Z → b b ̄ decays without identified leptons, the b →τ ν ̄ τ X branching ratio has been measured in the hadronic channel τ → ν τ X′. The result, BR ( b →τ ν ̄ τ X )=(2.19±0.24 ( stat )±0.39 ( syst ))% , is consistent with the Standard Model prediction and with previous experimental measurements.
TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.
In the context of a two-flavour approximation we reinterpret the published NOMAD limit on ν μ → ν τ oscillations in terms of ν e → ν τ oscillations. At 90% C.L. we obtain sin 2 2θ eτ < 5.2×10 −2 for large Δm 2 , while for sin 2 2 θ eτ =1 the confidence region includes Δm 2 <11 eV 2 / c 4 .
Average energy.
The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.
Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.
Measured forward-jet x distribution.
Elastic and proton-dissociative photoproduction of $\rho^0$, $\phi$ and $J/\psi$ vector mesons ($\gamma p\to Vp$, $\gamma p\to VN$, respectively) have been measured in e^+p interactions at HERA up to -t=3 GeV$^2$, where t is the four-momentum transfer squared at the photon-vector meson vertex. The analysis is based on a data sample in which photoproduction reactions were tagged by detection of the scattered positron in a special-purpose calorimeter. This limits the photon virtuality, Q^2, to values less than 0.01 GeV$^2$, and selects a $\gamma p$ average center-of-mass energy of <W> = 94 GeV. Results for the differential cross sections, d$\sigma$/d$t$, for $\rho^0$, $\phi$ and $J/\psi$ mesons are presented and compared to the results of recent QCD calculations. Results are also presented for the t-dependence of the pion-pair invariant-mass distribution in the $\rho^0$ mass region and of the spin-density matrix elements determined from the decay-angle distributions. The Pomeron trajectory has been derived from measurements of the W dependence of the elastic differential cross sections d$\sigma$/d$t$ for both $\rho^0$ and $\phi$ mesons.
Differential cross section for proton-dissociative RHO0 photoproduction.
Differential cross section for elastic RHO0 photoproduction.
The ratio of the elastic to proton-dissociative cross sections for RHO0 photoproduction.
First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.
The differential cross section for inclusive photoproduction of isolated photons.
Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.
The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the Delphi detector at the Z resonance between 1992 and
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
The ee -> ZZ cross section at sqrt(s)=182.7 and 188.6 GeV has been measured using the ALEPH detector. The analysis covers all of the visible ZZ final states and yields cross section measurements of sigma_ZZ(182.7 GeV) = 0.11 +- (0.16,0.11) (stat.) +- 0.04 (syst.) pb and sigma_ZZ(188.6 GeV) = 0.67 +- 0.13 (stat.) +- 0.04 (syst.) pb consistent with the Standard Model expectations.
The combined cross sections for the 2Z0 (NC2) fixed state.
We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average <W_{\gamma p}> \sim 180 GeV, respectively.
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.
Measured cross section within the kinematic and geometric cuts. THETA(C=GAMMA) is the angle between the photon and the closest jet, and THETA(C=LEPTON) is the angle between the photon and the lepton.
95 PCT confidence limits on possible anomalous contributions.