From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.
A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.
No description provided.
No description provided.
The charge asymmetry of quark jets produced in e + e − annihilations at 〈√ s 〉=57.9 GeV was measured with the TOPAZ detector at TRISTAN. The observed charge asymmetry is +0.091±0.014(stat.)±0.016(sys.). From the measured differential cross section, the axial vector coupling constant averaged over all quark flavors was determined to be 1.09 −0.21 +0.27 . These values are consistent with the standard model predictions. Possible deviations from the standard model were examined in terms of contact interactions, and the lower limits on the compositeness scale parameters were obtained to be 1.2–7.1 TeV at the 95% confidence level.
No description provided.
No description provided.
We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.
No description provided.
Error is dominated by systematic uncertainties.
No description provided.
A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.
Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
The production ofπ0 andη mesons has been studied in the reactions20Ne +Al at 350 MeV/u and40Ar + Ca at 1.0 GeV/u. Rapidity distributions and transverse momentum spectra have been measured and are compared to thermal distributions.
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.
No description provided.
No description provided.
No description provided.
The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.
Data for both hemispheres.
Data for both hemispheres.
Data for both hemispheres.
Production of multi-strange baryons and antibaryons is expected to be a useful indicator in the search for Quark-Gluon Plasma formation. Production of Ξ − and Ξ − has been observed for the first time in ultra-relativistic heavy ion interactions by the WA85 Experiment. We describe the procedure used to select these cascade candidates and show that Ξ − and Ξ − decays can be identified. Preliminary ratios of Ξ/Ξ production in sulphur-tungsten and proton-tungsten interactions are also presented.
PRODUCTION AT CENTRAL RAPIDITY. 123 XI- AND 53 XIBAR+ CANDIDATES.
PRODUCTION AT CENTRAL RAPIDITY. 82 XI- AND 22 XIBAR+ CANDIDATES.