An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .
The second DSYS error is the theoretical error.
We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.
Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.
Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.
SIN2TW determined from the asymmetry measurement.
This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is
Charged particle multiplicity distribution for the raw data in full phase space.
Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.
Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.
In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
We present measurement of the π0γ*γ, ηγ*γ and η′γ*γ form factors. The π0-form factor is for the first time observed in the space-like region. The transition form factor of the η-meson is determined from its decay modes π+π−π0, π+π−γ and the neutral decay mode γγ. The decay of the η′ is observed in the decay channels ργ, ηπ+π− with η→γγ and in the four charged prong final state stemming from ηπ+π− with the η decaying into π+π−(π0/γ). All form factors agree well with a simple ρ-pole predicted by the vector meson dominance model and also with the QCD inspired Brodsky-Lepage model.
No description provided.
No description provided.
No description provided.
We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.
Data requested from the authors.
Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.
From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.
Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.
Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.
Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.
We have measured the cross-section of the reaction e + e − → γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + > 103 GeV and Λ − 118 GeV are found. For the decays Z 0 → γ ,Z 0 → π 0 γ , Z 0 → γγγ we find upper limits of 2.9 × 10 −4 ,2.9×10 −4 ,4.1×10 −4 and 1.2×10 −4 , respectively. All limits are at 95% CL.
No description provided.
We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .
Cross section from 1990 data.
Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).
Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).