We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.
No description provided.
Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.
Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).
No description provided.
Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.
The e + e − → τ + τ − process has been measured using the CELLO detector at a mean total centre of mass energy of 34.2 GeV using essentially all the decay channels of the τ lepton. The measured cross section yields R τ =1.03±0.05 (stat)±0.07 (syst). Topological branching fraction are given for τ → 1, 3 or 5 charged tracks. The angular distribution shows a clear 1 + cos 2 θ dependance with a forward-backward asymmetry of -0.103 ± 0.052 corresponding to an axial-vector coupling a τ of the τ to the weak neutral current given by a τ =−1.12 ± 0.57.
No description provided.
No description provided.
Forward-backward asymmetry based on 1 + (cos(theta))**2 + bcos(theta) fit for angular distribution.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
No description provided.
No description provided.
We have measured the reaction ee → μμ and ee → ττ at center of mass energies from 9.4 to 31.6 GeV. The production cross sections are in agreement with the predictions of quantum electrodynamics, resulting in cutoff parameter limits of 70–100 GeV at 95% c.l. The branching ratio for τ → μν ν has been determined as [1.78 ± 2.0 (statist.) ± 1.8(syst.)]% The existence of a new sequential heavy lepton with a mass <14.5 GeV is excluded at 95% c.l.
No description provided.
No description provided.
The differential cross sections for Bhabha scattering and μ pair production, and the total τ pair cross section as measured by the PLUTO detector at PETRA, have been analyzed to extract information on the weak interaction of leptons. The data are compared with unified gauge theories. Since the observed electroweak effects are still consistent with zero (within errors) we can set experimental limits on neutral current parameters atQ2 values of 950 GeV2. In the framework of the standard SU(2)×U(1) model we find sin2Θw<0.52(95% c.l.). In the context of general singleZo models we can excludeZo masses of less than 40 GeV.
No description provided.
No description provided.