Showing 10 of 16 results
Measurements of the $\pi^{\pm}$, $K^{\pm}$, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS using data collected during 2010 run. The double differential $\pi^{\pm}$ yields were measured with increased precision compared to the previously published NA61/SHINE results, while the $K^{\pm}$ and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 120 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 120 to 140 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 160 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 160 to 180 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 200 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 200 to 220 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 340 to 380 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged pions emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of positively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 120 to 180 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 280 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 60 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of negatively charged kaons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 120 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 100 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 300 to 380 mrad and in the longitudinal range from 0 to 18cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 100 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 300 to 380 mrad and in the longitudinal range from 18 to 36cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 100 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 300 to 380 mrad and in the longitudinal range from 36 to 54cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 100 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 300 to 380 mrad and in the longitudinal range from 54 to 72cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 100 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 300 to 380 mrad and in the longitudinal range from 72 to 89.99cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 60 to 100 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Double differential yiedls of protons emitted from the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and in the longitudinal range from 89.99 to 90.01cm, as a function of momentum. The normalization is per proton on target.
Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of $\pi^\pm$, $K^\pm$, p, $K^0_S$ and $\Lambda$ are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^-$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential proton production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $K^0_S$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\Lambda$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using $dE/dx$, time-of-flight and Cherenkov radiation measurements. MIPP collected $1.42 \times10^6$ events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.
The production yields of PI+ and PI- and the ratio of these yields. The first uncertainty given on each value combines statistical uncertainties and systematic uncertainties from backgrounds.
Interaction cross sections and charged pion spectra in p+C interactions at 31 GeV/c were measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS. These data are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. A set of data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of a nuclear interaction length was used for the analysis. The measured p+C inelastic and production cross sections are 257.2 +- 1.9 +- 8.9 mb and 229.3 +- 1.9 +- 9.0 mb, respectively. Inclusive production cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in 10 intervals of the laboratory polar angle covering the range from 0 up to 420 mrad. The spectra are compared with predictions of several hadron production models.
The total inelastic cross section and production cross sections. The latter are obtained from the former by subtraction of the quasi-elastic contribution.
The differential PI+ PI- production cross section in the lab. system for the angular range 0 to 20 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 20 to 40 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 40 to 60 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 60 to 100 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 100 to 140 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 140 to 180 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 180 to 240 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 240 to 300 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 300 to 360 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 360 to 420 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 0 to 20 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 20 to 40 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 40 to 60 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 60 to 100 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 100 to 140 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 140 to 180 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 180 to 240 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 240 to 300 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 300 to 360 mrad.
The differential PI+ PI- production cross section in the lab. system for the angular range 360 to 420 mrad.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary carbon target, of proton and pion beams with momentum from \pm 3 GeV/c to \pm 15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on carbon nuclei are compared with cross-sections on beryllium, copper, tantalum and lead nuclei.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 20 to 30 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 30 to 45 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 45 to 60 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 65 to 90 degrees.
The measured deuteron to proton ratios for each of the 8 GeV Proton, PI+ and PI- beams for the angular range 90 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 3 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 5 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 8 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 12 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a P beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a P beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI+ beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI+ beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI+ beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for P production from a PI- beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI+ production from a PI- beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 20 to 30 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 30 to 40 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 40 to 50 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 50 to 60 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 60 to 75 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 75 to 90 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 90 to 105 degrees.
Measured cross section as a function of PT for PI- production from a PI- beam of momentum 15 GeV/c in the angular range 105 to 125 degrees.
The HARP collaboration has presented measurements of the double-differential pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this paper the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum and lead is presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams of protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d2 sigma / dp dtheta. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.
Differential cross section for PI+ production with a C target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Measurements of the double-differential charged pion production cross-section in the range of momentum 100 MeV/c < p < 800 MeV/c and angle 0.35 < \theta < 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum and proton-lead collisions are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.35 to 0.55 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.55 to 0.75 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.75 to 0.95 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.95 to 1.15 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 1.15 to 1.35 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 1.35 to 1.55 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 1.55 to 1.75 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 1.75 to 1.95 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 1.95 to 2.15 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 0.35 to 0.55 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 0.55 to 0.75 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 0.75 to 0.95 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 0.95 to 1.15 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 1.15 to 1.35 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 1.35 to 1.55 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 1.55 to 1.75 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 1.75 to 1.95 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the BE target for a PI- polar angle from 1.95 to 2.15 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 0.35 to 0.55 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 0.55 to 0.75 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 0.75 to 0.95 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 0.95 to 1.15 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 1.15 to 1.35 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 1.35 to 1.55 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 1.55 to 1.75 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 1.75 to 1.95 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the C target for a PI+ polar angle from 1.95 to 2.15 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 0.35 to 0.55 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 0.55 to 0.75 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 0.75 to 0.95 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 0.95 to 1.15 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 1.15 to 1.35 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 1.35 to 1.55 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 1.55 to 1.75 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 1.75 to 1.95 radians.
Double-differential cross section for inclusive PI- production in the LAB system with the C target for a PI- polar angle from 1.95 to 2.15 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the AL target for a PI+ polar angle from 0.35 to 0.55 radians.
The results of the measurements of the double-differential production cross-sections of pions in p-C and $\pi^\pm$-C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p-C interactions the analysis is performed using 100035 reconstructed secondary tracks, while the corresponding numbers of tracks for $\pi^-$-C and $\pi^+$-C analyses are 106534 and 10122 respectively. Cross-section results are presented in the kinematic range 0.5 GeV/c $\leq p_{\pi} <$ 8 GeV/c and 30 mrad $\leq \theta_{\pi} <$ 240 mrad in the laboratory frame. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 30 to 60 mrad.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 60 to 90 mrad.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 90 to 120 mrad.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 120 to 150 mrad.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 150 to 180 mrad.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 180 to 210 mrad.
Double-differential cross section for 12 GeV proton-carbon interactions with the scattered polar angle 210 to 240 mrad.
Double-differential cross section for 12 GeV positive pion-carbon interactions with the scattered polar angle 30 to 60 mrad.
Double-differential cross section for 12 GeV positive pion-carbon interactions with the scattered polar angle 60 to 90 mrad.
Double-differential cross section for 12 GeV positive pion-carbon interactions with the scattered polar angle 90 to 120 mrad.
Double-differential cross section for 12 GeV positive pion-carbon interactions with the scattered polar angle 120 to 150 mrad.
Double-differential cross section for 12 GeV positive pion-carbon interactions with the scattered polar angle 150 to 180 mrad.
Double-differential cross section for 12 GeV positive pion-carbon interactions with the scattered polar angle 180 to 210 mrad.
Double-differential cross section for 12 GeV negative pion-carbon interactions with the scattered polar angle 30 to 60 mrad.
Double-differential cross section for 12 GeV negative pion-carbon interactions with the scattered polar angle 60 to 90 mrad.
Double-differential cross section for 12 GeV negative pion-carbon interactions with the scattered polar angle 90 to 120 mrad.
Double-differential cross section for 12 GeV negative pion-carbon interactions with the scattered polar angle 120 to 150 mrad.
Double-differential cross section for 12 GeV negative pion-carbon interactions with the scattered polar angle 150 to 180 mrad.
Double-differential cross section for 12 GeV negative pion-carbon interactions with the scattered polar angle 180 to 210 mrad.
Measurements of double-differential charged pion production cross-sections in interactions of 12 GeV/c protons on O_2 and N_2 thin targets are presented in the kinematic range 0.5 GeV/c < p_{\pi} < 8 GeV/c and 50 mrad < \theta_{\pi} < 250 mrad (in the laboratory frame) and are compared with p--C results. For p--N_2 (p--O_2) interactions the analysis is performed using 38576 (7522) reconstructed secondary pions. The analysis uses the beam instrumentation and the forward spectrometer of the HARP experiment at CERN PS. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range. In particular, the present results allow the common hypothesis that p--C data can be used to predict the p--N_2 and p--O_2 pion production cross-sections to be tested.
Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 50 to 100 mrad.
Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 100 to 150 mrad.
Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 150 to 200 mrad.
Double differential cross section for pion production in P-N2 interactions for the pion scattered polar angle range 200 to 250 mrad.
Double differential cross section for pion production in P-O2 interactions for the pion scattered polar angle range 50 to 100 mrad.
Double differential cross section for pion production in P-O2 interactions for the pion scattered polar angle range 100 to 150 mrad.
Double differential cross section for pion production in P-O2 interactions for the pion scattered polar angle range 150 to 200 mrad.
Double differential cross section for pion production in P-O2 interactions for the pion scattered polar angle range 200 to 250 mrad.
Double differential cross section for pion production in P-C2 interactions for the pion scattered polar angle range 50 to 100 mrad.. The data have been previously published (ASTROPHYS 29,257(2008)) but are presented here with different binning for comparison with the O and N data.
Double differential cross section for pion production in P-C2 interactions for the pion scattered polar angle range 100 to 150 mrad.. The data have been previously published (ASTROPHYS 29,257(2008)) but are presented here with different binning for comparison with the O and N data.
Double differential cross section for pion production in P-C2 interactions for the pion scattered polar angle range 150 to 200 mrad.. The data have been previously published (ASTROPHYS 29,257(2008)) but are presented here with different binning for comparison with the O and N data.
Double differential cross section for pion production in P-C2 interactions for the pion scattered polar angle range 200 to 250 mrad.. The data have been previously published (ASTROPHYS 29,257(2008)) but are presented here with different binning for comparison with the O and N data.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.