The Dijet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Anway, Carol E. ; et al.
Phys.Rev.Lett. 69 (1992) 2896-2900, 1992.
Inspire Record 336778 DOI 10.17182/hepdata.19809

The dijet angular distribution is measured in the Collider Detector at Fermilab. This measurement covers higher mass ranges and larger scattering angles than previously possible. Good agreement is observed between the data and both leading-order [O(αs2)] and next-to-leading order [O(αs3)] QCD calculations. A limit on quark compositeness of Λc>1.0 TeV is obtained.

3 data tables

No description provided.

No description provided.

No description provided.


An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.