Showing 2 of 2 results
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.