A combination of searches for singly and doubly charged Higgs bosons, $H^{\pm}$ and $H^{\pm\pm}$, produced via vector-boson fusion is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross-section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.
Post-fit $m_{\mathrm{WZ}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.
Post-fit $m_{\mathrm{T}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.
Expected and observed exclusion limits at 95% CL for $\sigma_{\mathrm{VBF}}(H_{5}^{\pm}) \times \mathcal{B}(H_{5}^{\pm} \to W^{\pm}Z)$ as a function of $m_{\mathrm{H_5}}$. The inner (outer) band represents the $68\%$ ($95\%$) confidence interval around the median expected limit.
A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.
The distribution of $m_{lljj}$ used to discriminate the signal from background processes in the $eejj$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.
The distribution of $m_{T}^{\nu W}$ used to discriminate the signal and background processes in the $e\nu J$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The last bin includes overflow events (the underflow is not shown). The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.
Upper limits on $\sigma\times B$ as a function of $m_{e^*}$ in the $eejj$ channel. The $\pm 1(2)\sigma$ uncertainty bands around the expected limit represent all sources of systematic and statistical uncertainties.