Showing 2 of 2 results
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The search considers the $Z$ boson decaying into electrons or muons and the $H$ boson into a pair of $b$-quarks or $W$ bosons. The mass range considered is 230-800 GeV for the $A$ boson and 130-700 GeV for the $H$ boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for $\sigma \times B(A\rightarrow ZH) \times B(H\rightarrow bb$ or $H\rightarrow WW)$ are set. The upper limits are in the range 0.0062-0.380 pb for the $H\rightarrow bb$ channel and in the range 0.023-8.9 pb for the $H\rightarrow WW$ channel. An interpretation of the results in the context of two-Higgs-Doublet models is also given.
The mass distribution of the bb system before any mbb window cuts for the 2 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mass distribution of the bb system before any mbb window cuts for the 3 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(670, 500) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via b-associated production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=2. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=3. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
The mass distribution of the 4q system before any m4q window cuts for gluon-gluon fusion for the llWW channel. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(600, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for a narrow width A boson produced via gluon-gluon fusion production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (400, 200) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (400, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (430, 210) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (440, 220) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (500, 230) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (510, 240) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 250) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 260) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (530, 270) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 280) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 290) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 310) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (560, 320) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 330) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 340) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 350) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 360) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (590, 370) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 380) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 390) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (610, 400) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 410) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 420) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 430) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 440) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (640, 450) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 460) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 470) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (660, 480) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 490) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 510) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 520) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (690, 530) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 540) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 550) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 560) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 570) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (720, 580) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 590) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 600) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (740, 610) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 620) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 630) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 640) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 650) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (770, 660) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 670) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 680) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (790, 690) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (800, 700) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (800, 700) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.
The signal efficiency for the production modes (gluon-gluon fusion and b-associated production) and the signal regions used in the analysis. The efficiency denominator has the total number of generated MC events. The numerator includes the events passing the full signal region selection, including the mbb window cuts. The table shows for each signal mass pair (mA, mH) 3 efficiencies corresponding to the two production modes in the two categories, 2tag and 3tag. These corresponds to "nb = 2 category" and "nb >= 3 category", respectively, of the preprint. No numbers for gluon-gluon fusion in the 3tag category are provided since those are not used in the analysis. The efficiencies are given in fractions.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced in association with b-quarks. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the combination of the nb=2 and nb>=3 categories.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 2, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 3, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 130 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 130 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 140 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 140 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 150 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 150 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 160 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 160 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 170 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 170 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 180 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 180 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 190 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 190 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 210 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 210 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 220 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 220 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 230 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 230 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 240 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 240 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 250 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 250 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 260 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 260 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 270 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 270 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 280 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 280 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 290 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 290 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 310 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 310 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 320 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 320 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 330 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 330 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 340 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 340 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 350 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 350 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 360 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 360 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 370 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 370 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 380 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 380 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 390 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 390 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 400 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 400 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 410 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 410 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 420 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 420 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 430 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 430 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 440 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 440 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 450 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 450 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 460 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 460 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 470 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 470 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 480 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 480 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 490 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 490 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 510 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 510 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 520 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 520 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 530 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 530 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 540 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 540 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 550 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 550 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 560 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 560 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 570 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 570 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 580 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 580 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 590 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 590 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 600 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 600 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 610 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 610 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 620 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 620 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 630 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 630 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 640 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 640 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 650 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 650 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 660 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 660 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 670 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 670 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 680 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 680 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 690 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 690 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 700 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 700 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 200 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 200 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 300 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 300 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 500 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 500 GeV for the nb >= 3 (3 tag) category.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.