The reaction K + p→ Δ ++ (1236)+ anything is studied at beam momenta 8.2 and 16 GeV/ c and compared with other Δ ++ producing reactions. We find that the low-mass Δ ++ π − enhancement affects the shapes of Δ ++ inclusive distributions. The triple-Regge formula is found to be consistent with the data. Dual properties of this formula are successfully tested.
No description provided.
No description provided.
No description provided.
The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.
Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.
A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
Results are presented on an analysis of the reaction K + p → K ∗+ (890) p at 16 GeV/ c and compared with data at lower incident momenta and with corresponding results for the reaction K − p → K ∗− (890) p. It is found for both reactions that the energy dependence of the cross section exhibits a simple ( p − n lab behaviour.
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND.