The differential cross section and polarization in p−d elastic scattering have been measured at an incident laboratory momentum of 0.99 GeVc (kinetic energy 425 MeV) over most of the angular range. Elastic p−d scattering events from a CD2 target were selected by angular correlation, coplanarity, and time of flight. A significant feature of the results is the large positive polarization at backward scattering angles.
No description provided.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 25 GeV**2.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 35 GeV**2.
Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 45 GeV**2.
Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb^-1. The events are of the type ep -> eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x_gamma of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models.
Total diffractive dijet positron-proton cross section integrated over the full measured kinematic range.
Bin averaged hadron level differential cross section for diffractive dijet production as a function of X(C=GAMMA). The first systematic error is the uncorrelated and the second the correlated uncertainty.
Bin averaged hadron level differential cross section for diffractive dijet production as a function of the ET of jet 1. The first systematic error is the uncorrelated and the second the correlated uncertainty.
We have observed diffraction dissociation of KL0 mesons with a carbon target into the exclusive final states KS0π+π−, KS0ω, and KS0φ. The diffraction production cross section for these states is not strongly dependent on the incident energy, varying at most by 30% between 75 and 150 GeV. The mass distributions do not change appreciably as a function of laboratory energy. The ratio of the diffractive mass-threshold production of K*±π∓, KS0ρ, KS0ω, and KS0φ is compared with previously obtained lower-energy data.
TP (=T-TMIN) distribution for K0S PI+ PI- events satisfying the diffractive cuts.
TP distributions for K0S OMEGA and K0S PHI events which satisfy the diffractive cuts.
CROSS SECTIONS PER NUCLEUS.
Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.
Final results (systematic errors included).
Final results (systematic errors included).
Statistical errors only. Data supplied by S. Belforte.
Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies s =30.6, 52.8 and 62.3 GeV at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at s =23.5 GeV . Using the optical theorem, total cross sections are obtained with an accuracy of about 0.5% for proton-proton scattering and about 1% for antiproton-proton scattering. The measurement of the interference of the Coulomb scattering and the hadronic scattering permits a determination of the ratio of the real-to-imaginary part of the forward hadronic scattering amplitude. Also presented are measurements of the hadronic slope parameter.
No description provided.
No description provided.
No description provided.
Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.
DATA REQUESTED FROM AUTHORS.
RESULTS OF FITS.
No description provided.
The elastic scattering of K ± mesons on protons has been studied at 5 GeV/c. A total of about 500 000 events have been measured in the c.m. angular range 17° < θ cm < 165° corresponding to 0.2 < − t < (GeV/ c ) 2 . We observed a K − p backward peak which we have parametrized as d σ /d u = (0.6 ± 0.2) exp [(3.3 ± 0.6) u ] μb /(GeV/c) 2 , while for the K + p backward peak we find d σ /d u = (17.5 ± 1) exp [(3.6 ± 0.2) u ] μb /(GeV/c) 2 . The K − p cross-section falls to about 0.03 μ b ( GeV /c) 2 around − t = 5 (GeV/ c ) 2 , while the K + p cross-section stays in the vicinity of 0.3 μ b ( GeV /c) 2 in the same t -region. The K + p and K − p differential cross-sections have cross-over points at − t = 0.2, 1.1 and about 3.5 (GeV/ c ) 2 .
No description provided.
Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.