Measurements of the reaction γ p → p π + π − π + π − are presented, in which π + π − π + π − systems with masses up to 3 GeV are produced from fragmentation of the incident photon. The reaction is dominated by production of the large peak of the ϱ′(1600) meson and, at higher masses ≳2 GeV, y production of jet-like 4 π systems. The ϱ′(1600) meson is produced by a predominantly s -channel helicity conserving mechanism. At higher masses there are also indications of ϱπ peaks, of masses 1.3 GeV (the A 2 meson) and 1.75 GeV, produced with a recoiling π meson by a mechanism consistent with the Deck effect.
CORRECTED FOR TAILS OF BREIT-WIGNER RESONANCE USED IN FIT AND ALLOWING FOR 10 PCT BACKGROUND.
We present a measurement of the cross section for the reaction e + e − → e + e − π + π − π + π − at SPEAR. This channel is found to be large and dominated by the process γγ → ϱ 0 ϱ 0 → π + π − π + π − . The cross section, which is small just above the four-pion threshold, exhibits a large enhancement near the ϱ 0 ϱ 0 threshold.
Axis error includes +- 0.0/0.0 contribution (THE QUOTED ERRORS INCLUDE VARIOUS SYSTEMATIC ERRORS ADDED QUADRATICALLY).
The final states of charged hadrons produced in 280 GeV μp scattering are analysed with respect to their planarity and jet structure. Distributions of p ⊥ 2 in and p ⊥ out 2 are presented. A two jet structure in the forward hemisphere is observed for events with high p ⊥ tracks are predicted by QCD models.
PTIN**2 is the sum of the PTIN components squared.
PTOUT**2 is the sum of the PTOUT components squared.
Results are reported of an experiment to measure the cross section for production of the D*+ (D*−) in 200-GeV/c π−N interactions. We observe 78 ± 26 events corresponding to a D*-production cross section dσdy=1.6±0.5 μb at y=0.
No description provided.
We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.
Dimuon mass mass distribution at XFP=0.1.
Dimuon production for varying mass as function of XFP.
Dimuon production for varying mass as function of XFP.
Inclusive production of ϱ0,K*±(892), andf is studied in\(\bar p\)p interactions at 12 GeV/c. The inclusive cross sections for ϱ0,K*±(892), andf are found to be 6.7±0.3 mb, 1.0±0.2 mb, and 1.4±0.3 mb, respectively. The differential cross sections are presented as a function of c.m. rapidity, Feynmanx and square of the transverse momentumpT2. Comparison with the correspondingpp data shows some interesting differences which can be attributed to the\(\bar p\)p annihilation. The results are compared with the predictions of the quark fusion model.
No description provided.
No description provided.
No description provided.
The p p elastic differential cross section at 50 GeV/c has been measured in a two-arm spectrometer experiment at the CERN SPS. The | t | range covered extends from 0.7 to 5 (GeV/c. A pronounced dip-bump structure is observed with a sharp minimum at | t | = 1.5 (GeV/ c ) 2 .
No description provided.
Charged-current neutrino interactions have been analysed in a sample of pictures from BEBC equipped with a TST. Using a method independent of both the neutrino flux and nuclear interaction corrections, the ratio R = σ n / σ p has been measured. The result is R =1.98±0.19 for the ratio of total cross sections. Bjorken x distributions for proton and neutron targets and for u and d quarks are compared.
No description provided.
No description provided.
No description provided.
Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.
No description provided.
WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.
None
No description provided.