The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.
Longitudinal profile for 50 GeV < pT < 70 GeV.
Transverse profile for 50 GeV < pT < 70 GeV.
Longitudinal profile for 70 GeV < pT < 100 GeV.
The predicted effects of final state interactions such as colour reconnection are investigated by measuring properties of hadronic decays of W bosons, recorded at a centre-of-mass energy of sqrt(s)=182.7 GeV in the OPAL detector at LEP. Dependence on the modelling of hadronic W decays is avoided by comparing W+W- -> qqqq events with the non-leptonic component of W+W- -> qqlnu events. The scaled momentum distribution, its mean value, x_p, and that of the charged particle multiplicity, n_ch, are measured and found to be consistent in the two channels. The measured differences are: Diff(x_p) = +0.7 +- 0.8 +- 0.6 and Diff(n_ch) = (-0.09 +- 0.09 +-0.05)*10**-2. In addition, measurements of rapidity and thrust are performed for W+W- -> qqqq events. The data are described well by standard QCD models and disfavour one model of colour reconnection within the ARIADNE program. The current implementation of the ELLIS-GEIGER model of colour reconnection is excluded. At the current level of statistical precision no evidence for colour reconnection effects was found in the observables studied. The predicted effect of colour reconnection on OPAL measurements of M_W is also quantified in the context of models studied.
Here Z is defined as Z = 2*P(C=HADRON)/SQRT(S).
The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.
No description provided.
No description provided.
The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.
In this paper, results are presented from a study of the hadronic final states in e+e− annihilation at 29 GeV. The data were obtained with the High Resolution Spectrometer (HRS) at the SLAC PEP e+e− colliding-beam facility. The results are based on 6342 selected events corresponding to an integrated luminosity of 19.6 pb−1. The distributions of the events in sphericity (S), thrust (T), and aplanarity (A) are given and compared to other e+e− data in the same energy range. We measure 〈S〉=0.130±0.003±0.010 and 〈1-T〉=0.100±0.002. The sphericity distribution is compared to sphericity measurements made for beam jets in hadronic collisions as well as jets studied in neutrino scattering. The data sample is further reduced to 4371 events with the two-jet selections, S≤0.25 and A≤0.1. The single-particle distributions in the longitudinal and transverse directions are given. For low values of the momentum fraction (z=2p/W), the invariant distribution shows a maximum at z∼0.06, consistent with a QCD expectation. The data at high Feynman x (xF) show distribution consistent with being dominated by a (1-xf)2 variation for the leading quark-meson transition. The rapidity distribution shows a shallow central minimum with a height (1/NevdNh/dY‖Y=0=2.3±0.02±0.07. The mean charged multiplicity is measured to be 〈nch〉=13.1±0.05±0.6. The mean transverse momentum relative to the thrust axis 〈pT〉 rises as a function of z to a value of 0.70±0.02 GeV/c for z≳0.3. The distributions are compared to those measured in other reactions.
New values supplied 6.7.87 by M.Derrick.
No description provided.
New values supplied 6.7.87 by M. Derrick.
We present inclusive spectra of charged hadrons produced in\(\begin{array}{*{20}c}{( - )}\\v\\ \end{array}\)-Freon interactions at average beam energies of about 6 GeV. The experiment was done using the bubble chamber SKAT at the 70 GeV Serpukhov accelerator. In the hadronic energy range,W<5 GeV, dominantly isotropic events are found. The transverse momentum of the produced particles shows no strongW2-dependence. Feynman-scaling may be reached forW2≳10 GeV2, where also theż-spectra are described by the predictions of the parton model. All experimental data are reproduced rather well also by a Monte Carlo model based on ordinary phase space.
No description provided.
No description provided.
No description provided.