Date

Measurement of the cross-section for electroweak production of dijets in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 206-228, 2017.
Inspire Record 1627873 DOI 10.17182/hepdata.77267

The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.

0 data tables match query

Measurements of $Z\gamma$ and $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 112002, 2016.
Inspire Record 1448301 DOI 10.17182/hepdata.72823

The production of $Z$ bosons with one or two isolated high-energy photons is studied using $pp$ collisions at $\sqrt{s}$ = 8 TeV. The analyses use a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during the 2012 LHC data taking. The $Z\gamma$ and $Z\gamma\gamma$ production cross sections are measured with leptonic ($e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\nu\bar{\nu}$) decays of the $Z$ boson, in extended fiducial regions defined in terms of the lepton and photon acceptance. They are then compared to cross-section predictions from the Standard Model, where the sources of the photons are radiation off initial-state quarks and radiative $Z$-boson decay to charged leptons, and from fragmentation of final-state quarks and gluons into photons. The yields of events with photon transverse energy $E_T >$ 250 GeV from $\ell^{+}\ell^{-}\gamma$ events and with $E_T >$ 400 GeV from $\nu\bar{\nu}\gamma$ events are used to search for anomalous triple gauge-boson couplings $ZZ\gamma$ and $Z\gamma\gamma$. The yields of events with diphoton invariant mass $m_{\gamma\gamma} >$ 200 GeV from $\ell^{+}\ell^{-}\gamma\gamma$ events and with $m_{\gamma\gamma} > $ 300 GeV from $\nu\bar{\nu}\gamma\gamma$ events are used to search for anomalous quartic gauge-boson couplings $ZZ\gamma\gamma$ and $Z\gamma\gamma\gamma$. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

0 data tables match query

Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

0 data tables match query

Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 295-317, 2018.
Inspire Record 1632756 DOI 10.17182/hepdata.79163

This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

0 data tables match query

Version 2
Measurements of the production cross section of a $Z$ boson in association with jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 361, 2017.
Inspire Record 1514251 DOI 10.17182/hepdata.76542

Measurements of the production cross section of a $Z$ boson in association with jets in proton-proton collisions at $\sqrt{s} = 13$ TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb$^{-1}$ collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a $Z$ boson decaying to electrons or muons and produced in association with up to seven jets with $p_T > 30$ GeV and $|y| <2.5$. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for up to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.

0 data tables match query

Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 94 (2016) 032006, 2016.
Inspire Record 1449082 DOI 10.17182/hepdata.77033

Measurements of the top--antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-${p}_{\rm{T}}$ leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of $20.3$ $\textrm{fb}^{-1}$ from $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the $t\bar{t}$ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: $A^{\ell\ell}_{\textrm{C}}$ based on the selected leptons and $A^{t\bar{t}}_{\textrm{C}}$ based on the reconstructed $t\bar{t}$ final state. The inclusive asymmetries are measured in the full phase space to be $A^{\ell\ell}_{\textrm{C}} = 0.008 \pm 0.006$ and $A^{t\bar{t}}_{\textrm{C}} = 0.021 \pm 0.016$, which are in agreement with the Standard Model predictions of $A^{\ell\ell}_{\textrm{C}} = 0.0064 \pm 0.0003 $ and $A^{t\bar{t}}_{\textrm{C}} = 0.0111 \pm 0.0004$.

0 data tables match query

Measurement of the cross section for isolated-photon plus jet production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 780 (2018) 578-602, 2018.
Inspire Record 1645627 DOI 10.17182/hepdata.78401

The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-$k_t$ algorithm with radius parameter $R=0.4$ and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.

0 data tables match query

Study of hard double-parton scattering in four-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2016) 110, 2016.
Inspire Record 1479760 DOI 10.17182/hepdata.73908

Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb$^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum $p_{\mathrm{T}} \geq 20$ GeV and pseudorapidity $\eta \leq 4.4$, and at least one having $p_{\mathrm{T}} \geq 42.5$ GeV, the contribution of hard double-parton scattering is estimated to be $f_{\mathrm{DPS}} = 0.092 ^{+0.005}_{-0.011} (\mathrm{stat.}) ^{+0.033}_{-0.037} (\mathrm{syst.})$. After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective overlap area between the interacting protons, $\sigma_{\mathrm{eff}}$, was determined to be $\sigma_{\mathrm{eff}} = 14.9 ^{+1.2}_{-1.0} (\mathrm{stat.}) ^{+5.1}_{-3.8} (\mathrm{syst.})$ mb. This result is consistent within the quoted uncertainties with previous measurements of $\sigma_{\mathrm{eff}}$, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to $21^{+7}_{-6}$% of the total inelastic cross-section measured at $\sqrt{s} = 7$ TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

0 data tables match query

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 136-157, 2016.
Inspire Record 1468168 DOI 10.17182/hepdata.73120

This paper describes a measurement of the inclusive top quark pair production cross-section ($\sigma_{t\bar{t}}$) with a data sample of 3.2 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron--muon pair in the final state. Jets containing $b$-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two $b$-tagged jets are counted and used to determine simultaneously $\sigma_{t\bar{t}}$ and the efficiency to reconstruct and $b$-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: $\sigma_{t\bar{t}}$= 818 $\pm$ 8 (stat) $\pm$ 27 (syst) $\pm$ 19 (lumi) $\pm$ 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

0 data tables match query

Charged-particle distributions in $\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 758 (2016) 67-88, 2016.
Inspire Record 1419652 DOI 10.17182/hepdata.72491

Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

0 data tables match query