Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables
More…

Elastic Scattering and Single Meson Production in Proton-Proton Collisions at 2.85 Bev

Smith, G.A. ; Courant, H. ; Fowler, E.C. ; et al.
Phys.Rev. 123 (1961) 2160-2167, 1961.
Inspire Record 47571 DOI 10.17182/hepdata.734

The Brookhaven National Laboratory twenty-inch liquid hydrogen bubble chamber was exposed to a monoenergetic beam of 2.85-Bev protons, elastically scattered from a carbon target in the internal beam of the Cosmotron. All two-prong events, excluding strange particle events, have been studied by the Yale High-Energy Group. The remaining interactions have been studied by the Brookhaven Bubble Chamber Group. Elastic scattering was found to be mostly pure diffraction scattering at center-of-mass angles up to about thirty-five degrees. Some phase shift and/or tapering of the proton edge was required to fit the data at larger angles. No polarization effects in the proton-carbon scattering were observed using hydrogen as an analyzer of polarized protons. Nucleonic isobar formation in the T=32, J=32 state was found to account for a large part of single pion production. High-orbital angular-momentum states were found to be greatly favored in single pion production. The isobar model of Lindenbaum and Sternheimer gave good agreement with the observed nucleon and pion energy spectra. No polarization or alignment effects were observed for the isobar assumed in this model.

3 data tables

No description provided.

No description provided.