Date

Version 2
Searches for hidden sectors using $K^+\toπ^+X$ decays

The NA62 collaboration Cortina Gil, Eduardo ; Jerhot, Jan ; Minucci, Elisa ; et al.
CERN-EP-2025-167, 2025.
Inspire Record 2953428 DOI 10.17182/hepdata.160245

Results from the study of the rare decays $K^+\toπ^+ν\barν$, $K^{+}\rightarrowπ^{+}μ^{+}μ^{-}$ and $K^{+}\rightarrowπ^{+}γγ$ at the NA62 experiment at CERN are interpreted in terms of improved limits for $\rm{B}(K^+\toπ^+X)$ and coupling parameters of hidden-sector models, where $X$ is a mediator. World-leading limits are achieved for dark photon, dark scalar and axion-like particle models.

25 data tables

Number of expected and observed events as a function of squared missing mass.

Single Event Sensitivity (SES) for the $K^{+}\rightarrow\pi^{+}X$ search as a function of X mass.

Model-independent constraints on the branching ratio of the $K^{+}\rightarrow\pi^{+}X$ decay

More…

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

Three-pion Bose-Einstein correlations measured in proton-proton collisions

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 08 (2025) 174, 2025.
Inspire Record 2928684 DOI 10.17182/hepdata.160692

A study on the Bose-Einstein correlations for triplets of same-sign pions is presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV, recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb$^{-1}$. For the first time, the results are interpreted in the core-halo model. The parameters of the model are determined in regions of charged-particle multiplicity. This measurement provides insight into the nature of hadronisation in terms of coherence, showing a coherent emission of pions.

3 data tables

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 5-10.

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 11-20.

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 21-60.


New constraints on cosmic ray-boosted dark matter from the LUX-ZEPLIN experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 134 (2025) 241801, 2025.
Inspire Record 2903333 DOI 10.17182/hepdata.157863

While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.

1 data table

90% CL CRDM-nucleon cross sections


First measurement of $b$-jet mass with and without grooming

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
LHCb-PAPER-2025-009, 2025.
Inspire Record 2922449 DOI 10.17182/hepdata.159893

The LHCb collaboration presents a novel suite of heavy-flavour jet substructure measurements at forward rapidity in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The jet mass is a perturbatively calculable probe of the virtuality of hard-scattered quarks and gluons, connecting small-distance quantum chromodynamics (QCD) with long-distance experimental measurement. It becomes dominated by nonperturbative corrections at small values, presenting an excellent test of QCD across a broad range of energies. Measuring heavy-flavour jet mass with a theoretically unambiguous flavour definition for the first time probes the gluon splitting mechanism for heavy-flavour production and pushes tests of perturbative QCD to unprecedented theoretical precision. Utilising the soft drop jet-grooming technique to access the perturbative jet core further enhances constraints on first-principles theory. Measurements of the jet mass for jets containing fully reconstructed $B^\pm$ hadrons are reported with and without grooming. These results offer unparalleled tests of quark flavour and mass dependence in QCD and provide a baseline for future studies of heavy-flavour jet quenching in heavy-ion collisions.

42 data tables

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $10 < p_{\textrm{T,jet}} < 12$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $12 < p_{\textrm{T,jet}} < 15$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $15 < p_{\textrm{T,jet}} < 20$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

More…

Measurements of $W^+W^-$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 08 (2025) 142, 2025.
Inspire Record 2923238 DOI 10.17182/hepdata.156818

Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.

63 data tables

Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.

Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.

More…

Search for lepton flavor-violating decay modes $B^0 \to K^{\ast 0}\tau^\pm\ell^\mp$ ($\ell = e,\mu$) with hadronic B-tagging at Belle and Belle II

The Belle-II & Belle collaborations Adachi, I. ; Ahn, Y. ; Aihara, H. ; et al.
Belle II preprint: 2025-014, 2025.
Inspire Record 2920672 DOI 10.17182/hepdata.159492

We present the results of a search for the charged-lepton-flavor violating decays $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$, where $\ell^{\mp}$ is either an electron or a muon. The results are based on 365 fb$^{-1}$ and 711 fb$^{-1}$ datasets collected with the Belle II and Belle detectors, respectively. We use an exclusive hadronic $B$-tagging technique, and search for a signal decay in the system recoiling against a fully reconstructed $B$ meson. We find no evidence for $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$ decays and set upper limits on the branching fractions in the range of $(2.9-6.4)\times10^{-5}$ at 90% confidence level.

72 data tables

$M_{\tau}$ distribution in signal region, (OS$e$, Belle)

$M_{\tau}$ distribution in signal region, (OS$e$, Belle II)

$M_{\tau}$ distribution in signal region, (OS$\mu$, Belle)

More…

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012021, 2025.
Inspire Record 2918816 DOI 10.17182/hepdata.159761

A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.

6 data tables

Acceptance times efficiency weighted yields across the signal grid.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.

More…

Measurement of charged hadron multiplicity in Au+Au collisions at $\sqrt{\text{s}_{\text{NN}}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
2025.
Inspire Record 2907537 DOI 10.17182/hepdata.159879

The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.

2 data tables

Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.

Nch as a function of $\eta$, presented in Figure 5.


Measurement of the transverse energy density in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
Phys.Rev.C 112 (2025) 024908, 2025.
Inspire Record 2907573 DOI 10.17182/hepdata.159889

This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/dη$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|η\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/dη$ are presented for a range of centrality intervals and the average $dE_{T}/dη$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $η$ and improved precision in low-$N_{\mathrm{part}}$ events.

10 data tables

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.

More…