We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0\%--40\% most central events at midrapidity for Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$\pm$53(stat)$\pm$57(syst)~MeV/$c$ and 333$\pm$72(stat)$\pm$45(syst)~MeV/$c$ for minimum bias and 0\%--40\% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{\rm ch}/d\eta$ observed in Au$+$Au at the same collision energy.
Direct photon fraction measured with the virtual photon method for different systems in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.
The direct photon spectra for Minimum Bias and 0-40% centrality in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1<p_T<7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.
Invariant $p_T$ spectra of the $\phi$ meson for different centrality bins in Au+Au, Cu+Cu, $d$+Au, and $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$R_{AA}$ vs. $p_T$ for $\phi$ in central Au+Au collisions, $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ in 10-20% mid-central Au+Au collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $p$+$\bar{p}$ in 60-92% and for $\pi^0$ in 80-92% peripheral Au+Au collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.
$R_{AA}$ vs. $p_T$ for $\phi$ for 30-40% centrality Au+Au and 0-10% centrality Cu+Cu collisions, and $R_{AA}$ vs. $p_T$ for $\phi$ and $\pi^0$ for 40-50% centrality Au+Au and 10-20% centrality Cu+Cu collisions. The global uncertainty of ~ 10% related to the $p$+$p$ reference normalization is not shown.