Using 11.6 pb^{-1} of data collected in the energy range 0.984--1.06 GeV by CMD-2 at VEPP-2M, the cross section of the reaction e+e- to pi+pi-pi+pi- has been studied. For the first time an interference pattern was observed in the energy dependence of the cross section near the phi meson. The branching ratio of the phi to pi+pi-pi+pi- decay double suppressed by the G-parity and OZI rule is measured Br(phi to pi+pi-pi+pi-) = (3.93 +- 1.74 +- 2.14) \cdot 10^{-6}. The upper limits have been placed for the decays phi to pi+pi-pi+pi-pi0 and phi to eta pi+pi- Br(phi to pi+pi-pi+pi-pi0) < 4.6 \cdot 10^{-6} 90% CL, Br(phi to eta pi+pi-) < 1.8 \cdot 10^{-5} 90% CL.
Only statistical errors are presented. The total systematic error is estimated to about 13 PCT.
Mid-rapidity spectra and yields of K$^-$ and K$^+$ have been measured for Au+Au collisions at 4, 6, 8, and 10.7 AGeV. The K$^-$ yield increases faster with beam energy than for K$^+$ and hence the K$^-$/K$^+$ ratio increases with beam energy. This ratio is studied as a function of both $\sqrt{s}$ and $\sqrt{s}$-$\sqrt{s_{th}}$ which allows the direct comparison of the kaon yields with respect to the production threshold in p+p reactions. For equal $\sqrt{s}$ - $\sqrt{s_{th}}$ the measured ratio K$^-$/K$^+$=0.2 at energies above threshold in contrast to the K$^-$/K$^+$ ratio of near unity observed at energies below threshold. The use of the K$^-$/K$^+$ ratio to test the predicted changes of kaon properties in dense nuclear matter is discussed.
Only statistical errors are presented.
Only statistical errors are presented.
Only statistical errors are presented.
The ratio of the total exclusive production cross sections for $\eta\prime$ and $\eta$ mesons has been measured in the $pp$ reaction at $p_{beam}=3.67$ GeV/c. The observed $\eta\prime/\eta$ ratio is $(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2}$ from which the exclusive $\eta\prime$ meson production cross section is determined to be $(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b$. Differential cross section distributions have been measured. Their shape is consistent with isotropic $\eta\prime$ meson production.
No description provided.
No description provided.
Only statistial errors.
The dependence on Q^2 (the negative square of the 4-momentum of the exchanged virtual photon) of the generalised Gerasimov-Drell-Hearn integral for the proton has been measured in the range 1.2 GeV^2 < Q^2 < 12 GeV^2 by scattering longitudinally polarised positrons on a longitudinally polarised hydrogen gas target. The contributions of the nucleon-resonance and deep-inelastic regions to this integral have been evaluated separately. The latter has been found to dominate for Q^2 > 3 GeV^2, while both contributions are important at low Q^2. The total integral shows no significant deviation from a 1/Q^2 behaviour in the measured Q^2 range, and thus no sign of large effects due to either nucleon-resonance excitations or non-leading twist.
The GDH integral as a function of Q2 in the resonance region (W**2 = 1 to 4.2 GeV**2), the measured region (W**2=4.2 to 45 GeV**2), and the total region (W**2= 1 to 45 GeV**2).
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.
Triple gauge boson couplings. All systematic errors are added in quadrature.
Measurements are presented of the polarisation of W+W- boson pairs produced in e+e- collisions, and of CP-violating WWZ and WWGamma trilinear gauge couplings. The data were recorded by the OPAL experiment at LEP during 1998, where a total integrated luminosity of 183 pb^-1 was obtained at a centre-of-mass energy of 189 GeV. The measurements are performed through a spin density matrix analysis of the W boson decay products. The fraction of W bosons produced with longitudinal polarisation was found to be sigma_L/sigma_total = (21.0 +- 3.3 +- 1.6)% where the first error is statistical and the second systematic. The joint W boson pair production fractions were found to be sigma_TT/sigma_total = (78.1 +- 9.0 +- 3.2) %, sigma_LL/sigma_total = (20.1 +- 7.2 +- 1.8) % and sigma_TL/sigma_total = (1.8 +- 14.7 +- 3.8) %. In the CP-violating trilinear gauge coupling sector we find kappa_z = -0.20 +0.10 -0.07, g^z_4 = -0.02 +0.32 -0.33 and lambda_z = -0.18 +0.24 -0.16, where errors include both statistical and systematic uncertainties. In each case the coupling is determined with all other couplings set to their Standard Model values except those related to the measured coupling via SU(2)_LxU(1)_Y symmetry. These results are consistent with Standard Model expectations.
Individual W-boson transverse polarised cross-sections.
Individual W-boson longitudinal polarised cross-sections.
W pair polarized cross-sections. (C=TT), (C=LL), and (C=TL) stand for both W transversely polarised, for both W longitudinally polarised, and for transversely and longitudinally polarisedW-bosons, respectively.
We present a measurement of asymmetries in the production of $\Lambda_c^+$ and $\Lambda_c^-$ baryons in 500 GeV/c $\pi^-$--nucleon interactions from the E791 experiment at Fermilab. The asymmetries were measured as functions of Feynman x ($x_F$) and transverse momentum squared ($p_T^2$) using a sample of $1819 \pm 62$ $\Lambda_c$'s observed in the decay channel $\Lambda_c \to pK^-\pi^+$. We observe more $\Lambda_c^+$ than $\Lambda_c^-$ baryons, with an asymmetry of $(12.7\pm3.4\pm1.3) %$ independent of $x_F$ and $p_T^2$ in our kinematical range $(-0.1 < x_F < 0.6$ and $0.0 < p_T^2 < 8.0 (GeV/c)^2$). This $\Lambda_c$ asymmetry measurement is the first with data in both the positive and negative $x_F$ regions.
No description provided.
No description provided.
The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find $\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007$ at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.
Results for G1/F1 for the proton and neutron.
Results for G1/F1 for the proton and neutron.
Results for G1/F1 for the proton and neutron.
We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\eta |_{|\eta|<1} = 408 \pm 12 {(stat)} \pm 30 {(syst)}$ at 56 AGeV and $555 \pm 12 {(stat)} \pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.
No description provided.
A partial wave analysis of the centrally produced eta pi0 and eta pi- channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. Clear a0(980) and a2(1320) signals have been observed in S and D+ waves respectively. The dPT, phi and |t| distributions of these resonances are presented.
The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)). SIG(C=TOT) stands for the cross section for the whole ABS(PT(P=3)-PT(P=4))interval.
The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)).