Measurement of beauty production via non-prompt charm hadrons in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
CERN-EP-2024-193, 2024.
Inspire Record 2808020 DOI 10.17182/hepdata.155514

The production cross sections of $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton$-$lead (p$-$Pb) collisions at the center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. Nuclear modification factors ($R_{\mathrm {pPb}}$) of non-prompt $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ are calculated as a function of the transverse momentum ($p_{\mathrm T}$) to investigate the modification of the momentum spectra measured in p$-$Pb collisions with respect to those measured in proton$-$proton (pp) collisions at the same energy. The $R_{\mathrm {pPb}}$ measurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significant $p_{\mathrm T}$ dependence. The $p_{\mathrm T}$-integrated cross sections and $p_{\mathrm T}$-integrated $R_{\mathrm {pPb}}$ of non-prompt $\mathrm {D^0}$ and $\mathrm {D^+}$ mesons are also computed by extrapolating the visible cross sections down to $p_{\mathrm T}$ = 0. The non-prompt D-meson $R_{\mathrm {pPb}}$ integrated over $p_{\mathrm T}$ is compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt $\mathrm {\Lambda_{c}^{+}/D^{0}}$ and $\mathrm{D^+/D^0}$ production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function of $p_{\mathrm T}$ display a similar trend to that measured for charm hadrons in the same collision system.

10 data tables

Non-prompt $\mathrm{D}^0$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.

Non-prompt $\mathrm{D}^+$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.

Non-prompt $\Lambda_{c}^{+}$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.

More…

Measurement of the production cross section of prompt $\Xi^0_{\rm c}$ baryons in p$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Eur.Phys.J.C 85 (2025) 86, 2025.
Inspire Record 2789570 DOI 10.17182/hepdata.155330

The transverse momentum ($p_{\rm T}$) differential production cross section of the promptly produced charm-strange baryon $\Xi_{\rm c}^{0}$ (and its charge conjugate $\overline{\Xi_{\rm c}^{0}}$) is measured at midrapidity via its hadronic decay into ${\rm \pi^{+}}\Xi^{-}$ in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector at the LHC. The $\Xi_{\rm c}^{0}$ nuclear modification factor ($R_{\rm pPb}$), calculated from the cross sections in pp and p$-$Pb collisions, is presented and compared with the $R_{\rm pPb}$ of $\Lambda_{\rm c}^{+}$ baryons. The ratios between the $p_{\rm T}$-differential production cross section of $\Xi_{\rm c}^{0}$ baryons and those of $\mathrm {D^0}$ mesons and $\Lambda_{\rm c}^{+}$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt $\Xi^0_{\rm c}$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p$-$Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity extrapolated down to $p_{\rm T}$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p$-$Pb collisions at midrapidity.

6 data tables

Prompt $\Xi_\mathrm{c}^0$ productions cross-section as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.

$\Xi_\mathrm{c}^0~R_\mathrm{pPb}$ as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.

$\Xi_\mathrm{c}^0/\mathrm{D}^0$ ratio as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.

More…