We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb$^{-1}$. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.
Unit-normalised distribution of the transverse momentum of the leading charged-particle $p_\mathrm{T}^\mathrm{lead}$ > 1 GeV.
Mean values of charged-particle multiplicity $n_\mathrm{ch}$ as a function of leading charged-particle $p_\mathrm{T}$ in the trans-min azimuthal region.
Mean values of charged-particle multiplicity $n_\mathrm{ch}$ as a function of leading charged-particle $p_\mathrm{T}$ in the trans-max azimuthal region.
A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson , decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of $4.6$ fb$^{-1}$. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.
Towards scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Away scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.