Showing 10 of 1121 results
We report the systematic measurement of protons and light nuclei production in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum ($p_{T}$) spectra of protons ($p$), deuterons ($d$), tritons ($t$), $^{3}\mathrm{He}$, and $^{4}\mathrm{He}$ are measured from mid-rapidity to target rapidity for different collision centralities. We present the rapidity and centrality dependence of particle yields ($dN/dy$), average transverse momentum ($\langle p_{T}\rangle$), yield ratios ($d/p$, $t/p$,$^{3}\mathrm{He}/p$, $^{4}\mathrm{He}/p$), as well as the coalescence parameters ($B_2$, $B_3$). The 4$\pi$ yields for various particles are determined by utilizing the measured rapidity distributions, $dN/dy$. Furthermore, we present the energy, centrality, and rapidity dependence of the compound yield ratios ($N_{p} \times N_{t} / N_{d}^{2}$) and compare them with various model calculations. The physics implications of those results on the production mechanism of light nuclei and on QCD phase structure are discussed.
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology.
A search for heavy resonances decaying into a $W$ or $Z$ boson and a Higgs boson produced in proton$-$proton collisions at the Large Hadron Collider at $\sqrt{s} = 13$ TeV is presented. The analysis utilizes the dominant $W \to q \bar{q}^\prime$ or $Z \to q \bar{q}$ and $H \to b \bar{b}$ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the Heavy Vector Triplet model with spin-1 $W^\prime$ and $Z^\prime$ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for $W^\prime \to WH$ and from 8.7 to 0.53 fb for $Z^\prime \to ZH$ at the 95 % confidence level.
Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.
We present two-particle $p_{\rm t}$ correlations as a function of event centrality for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These results are compared to previous measurements from CERES at the Super Proton Synchrotron and from ALICE at the Large Hadron Collider. The data are compared with UrQMD model calculations and with a model based on a Boltzmann-Langevin approach incorporating effects from thermalization. The relative dynamical correlations for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV show a power law dependence on the number of participant nucleons and agree with the results for Pb+Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~ {\rm TeV}$ from ALICE. As the collision energy is lowered from $\sqrt{s_{\rm NN}}$ = 200 GeV to 7.7 GeV, the centrality dependence of the relative dynamical correlations departs from the power law behavior observed at the higher collision energies. In central collisions, the relative dynamical correlations increase with collision energy up to $\sqrt{s_{\rm NN}}$ = 200 GeV in contrast to previous measurements that showed little dependence on the collision energy.
This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.
The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.