Showing 10 of 326 results
The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> mu- nu final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> mu- nu final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Combined fiducial cross-section measurements for W+ boson production in the W+ -> l+ nu (l = e, mu) final state.
Combined fiducial cross-section measurements for W- boson production in the W- -> l- nu (l = e, mu) final state.
Combined fiducial cross-section measurements for W boson production in the W -> l nu (l = e, mu) final state.
Combined fiducial cross-section measurements for Z/gamma* production in the Z/gamma* -> l- l+ (l = e, mu) final state.
Combined total cross-section measurements for W+ boson production in the W+ -> l+ nu (l = e, mu) final state.
Combined total cross-section measurements for W- boson production in the W- -> l- nu (l = e, mu) final state.
Combined total cross-section measurements for W boson production in the W -> l nu (l = e, mu) final state.
Combined total cross-section measurements for Z/gamma* production in the Z/gamma* -> l- l+ (l = e, mu) final state.
Measured fiducial cross-section ratio R_{W+-/Z} = sigma (W+/- -> l+/- nu/nubar) / sigma (Z/gamma^* -> l+ l-) where l = e, mu.
Measured fiducial cross-section ratio R_{W+/W-} = sigma (W+ -> l+ nu) / sigma (W- -> l- nubar) where l = e, mu.
Measured charge asymmetry in W-boson production A_{l} = ( sigma (W+ -> l+ nu) - sigma (W- -> l- nubar) ) / ( sigma (W+ -> l+ nu) + sigma (W- -> l- nubar) ) where l = e, mu.
The ratio of measured W+ cross-sections in the electron and muon decay channels R_{W+} = sigma (W+ -> e+ nu) / sigma (W+ -> mu+ nu)
The ratio of measured W- cross-sections in the electron and muon decay channels R_{W-} = sigma (W- -> e- nu) / sigma (W- -> mu- nu)
The ratio of measured W cross-sections in the electron and muon decay channels R_{W} = sigma (W -> e nu) / sigma (W -> mu nu)
The ratio of measured Z/gamma^* cross-sections in the electron and muon decay channels R_{Z/gamma^*} = sigma (Z/gamma^* -> e+ e-) / sigma (Z/gamma^* -> mu+ mu-)
Correlation coefficients among (W- -> l- nubar), (W+ -> l+ nu), (Z/gamma^* -> l+ l-) where (l = e, mu) excluding the common normalisation uncertainty due to the luminosity calibration.
This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $
$\langle n_{ch} \rangle$, forward jet.
$\langle n_{ch} \rangle$, central jet.
$\langle \zeta \rangle$, forward jet.
$\langle \zeta \rangle$, central jet.
$\langle p_{T}^{rel} / GeV \rangle$, forward jet.
$\langle p_{T}^{rel} / GeV \rangle$, central jet.
$\langle r \rangle$, forward jet.
$\langle r \rangle$, central jet.
$\langle n_{ch} \rangle$, both jets.
$\langle \zeta \rangle$, combined jet.
$\langle p_{T}^{rel} / GeV \rangle$, both jets.
$\langle r \rangle$, both jets.
$n_{ch}$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$n_{ch}$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$n_{ch}$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$n_{ch}$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$n_{ch}$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$n_{ch}$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$n_{ch}$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$n_{ch}$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$n_{ch}$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$n_{ch}$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$n_{ch}$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$n_{ch}$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$n_{ch}$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$n_{ch}$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$r$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$r$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$r$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$r$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$r$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$r$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$r$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$r$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$r$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$r$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$r$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$r$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$r$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$r$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$\zeta$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$\zeta$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$\zeta$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$\zeta$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$\zeta$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$\zeta$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$\zeta$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$\zeta$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$\zeta$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$\zeta$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$\zeta$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$\zeta$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$\zeta$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$\zeta$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$p_{T}^{rel} / GeV$ , 100 GeV < Jet p_{T} < 200 GeV, both jets.
$p_{T}^{rel} / GeV$ , 200 GeV < Jet p_{T} < 300 GeV, both jets.
$p_{T}^{rel} / GeV$ , 300 GeV < Jet p_{T} < 400 GeV, both jets.
$p_{T}^{rel} / GeV$ , 400 GeV < Jet p_{T} < 500 GeV, both jets.
$p_{T}^{rel} / GeV$ , 500 GeV < Jet p_{T} < 600 GeV, both jets.
$p_{T}^{rel} / GeV$ , 600 GeV < Jet p_{T} < 700 GeV, both jets.
$p_{T}^{rel} / GeV$ , 700 GeV < Jet p_{T} < 800 GeV, both jets.
$p_{T}^{rel} / GeV$ , 800 GeV < Jet p_{T} < 900 GeV, both jets.
$p_{T}^{rel} / GeV$ , 900 GeV < Jet p_{T} < 1000 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1000 GeV < Jet p_{T} < 1200 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1200 GeV < Jet p_{T} < 1400 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1400 GeV < Jet p_{T} < 1600 GeV, both jets.
$p_{T}^{rel} / GeV$ , 1600 GeV < Jet p_{T} < 2000 GeV, both jets.
$p_{T}^{rel} / GeV$ , 2000 GeV < Jet p_{T} < 2500 GeV, both jets.
$n_{ch}$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$n_{ch}$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$n_{ch}$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$n_{ch}$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$n_{ch}$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$n_{ch}$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$n_{ch}$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$n_{ch}$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$n_{ch}$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$n_{ch}$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$n_{ch}$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$n_{ch}$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$n_{ch}$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$n_{ch}$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$r$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$r$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$r$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$r$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$r$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$r$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$r$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$r$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$r$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$r$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$r$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$r$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$r$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$r$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$\zeta$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$\zeta$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$\zeta$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$\zeta$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$\zeta$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$\zeta$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$\zeta$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$\zeta$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$\zeta$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$\zeta$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$\zeta$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$\zeta$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$\zeta$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$\zeta$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 100 GeV < Jet p_{T} < 200 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 200 GeV < Jet p_{T} < 300 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 300 GeV < Jet p_{T} < 400 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 400 GeV < Jet p_{T} < 500 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 500 GeV < Jet p_{T} < 600 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 600 GeV < Jet p_{T} < 700 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 700 GeV < Jet p_{T} < 800 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 800 GeV < Jet p_{T} < 900 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 900 GeV < Jet p_{T} < 1000 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1000 GeV < Jet p_{T} < 1200 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1200 GeV < Jet p_{T} < 1400 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1400 GeV < Jet p_{T} < 1600 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 1600 GeV < Jet p_{T} < 2000 GeV, more forward jet.
$p_{T}^{rel} / GeV$ , 2000 GeV < Jet p_{T} < 2500 GeV, more forward jet.
$n_{ch}$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$n_{ch}$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$n_{ch}$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$n_{ch}$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$n_{ch}$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$n_{ch}$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$n_{ch}$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$n_{ch}$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$n_{ch}$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$n_{ch}$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$n_{ch}$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$n_{ch}$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$n_{ch}$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$n_{ch}$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
$r$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$r$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$r$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$r$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$r$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$r$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$r$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$r$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$r$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$r$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$r$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$r$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$r$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$r$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
$\zeta$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$\zeta$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$\zeta$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$\zeta$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$\zeta$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$\zeta$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$\zeta$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$\zeta$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$\zeta$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$\zeta$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$\zeta$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$\zeta$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$\zeta$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$\zeta$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 100 GeV < Jet p_{T} < 200 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 200 GeV < Jet p_{T} < 300 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 300 GeV < Jet p_{T} < 400 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 400 GeV < Jet p_{T} < 500 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 500 GeV < Jet p_{T} < 600 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 600 GeV < Jet p_{T} < 700 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 700 GeV < Jet p_{T} < 800 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 800 GeV < Jet p_{T} < 900 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 900 GeV < Jet p_{T} < 1000 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1000 GeV < Jet p_{T} < 1200 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1200 GeV < Jet p_{T} < 1400 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1400 GeV < Jet p_{T} < 1600 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 1600 GeV < Jet p_{T} < 2000 GeV, more central jet.
$p_{T}^{rel} / GeV$ , 2000 GeV < Jet p_{T} < 2500 GeV, more central jet.
The total uncertainty covariance matrix for the average number of tracks per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the average fragmentation function per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the average relative $p_T$ per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the average r per jet $p_T$ bin. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the number of tracks. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the fragmentation function. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the relative $p_T$. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
The total uncertainty covariance matrix for the r. The first half of the bins on a given axis correspond to the more central jet while the second half correspond to the more forward jet. See Fig. 4 in the paper for more information about the binning. The covariance matrix is the sum of the covariance matrices for each source of systematic and statistical uncertainty. Note that the overall sign for the systematic uncertainty covariances is arbitrary.
Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.
Limit Plot
Limit Plot
Limit Plot
Limit Plot
Limit Plot
Limit Plot
HVT WW Acceptance times Efficiency
HVT WZ Acceptance times Efficiency
RS Graviton WW Acceptance times Efficiency
RS Graviton ZZ Acceptance times Efficiency
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
Transverse mass distribution for events satisfying all selection criteria in the electron channel.
Transverse mass distribution for events satisfying all selection criteria in the muon channel.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the muon+neutrino channel as a function of the $W^\prime$ pole mass.
Combined (electron and muon channels) upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to a single lepton generation as a function of the $W^\prime$ pole mass.
Observed upper limits at the 95% CL on the cross section for generic $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
Observed upper limits at the 95% CL on the cross section for generic $W^\prime$ production and decay to the muon+neutrino channel as a function of the $W^\prime$ pole mass.
Combined (electron and muon channels) observed upper limits at the 95% CL on the cross section for generic $W^\prime$ production and decay to a single lepton generation as a function of the $W^\prime$ pole mass.
Observed upper limits at the 95% CL on the visible cross section in the electron+neutrino channel as a function of the transverse mass threshold.
Observed upper limits at the 95% CL on the visible cross section in the muon+neutrino channel as a function of the transverse mass threshold.
Product of acceptance and efficiency for the electron and muon selections as a function of the $W^\prime$ pole mass.
Expected upper limits at the 95% CL on the cross section for generic $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
Expected upper limits at the 95% CL on the cross section for generic $W^\prime$ production and decay to the muon+neutrino channel as a function of the $W^\prime$ pole mass.
Combined (electron and muon channels) expected upper limits at the 95% CL on the cross section for generic $W^\prime$ production and decay to a single lepton generation as a function of the $W^\prime$ pole mass.
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbbb, bbWW, bb$\tau\tau$, WWWW, bb$\gamma \gamma$ and WW$\gamma\gamma$ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio ($ \kappa_{\lambda} $) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to $ -5.0 < \kappa_{\lambda} <12.0 $ ($ -5.8 < \kappa_{\lambda} <12.0 $). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.
Signal acceptance times efficiency as a function of κ<sub>λ</sub> for the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^{+}\tau^{-}$ and $b\bar{b}\gamma\gamma$ analyses. The $b\bar{b}b\bar{b}$ curve is the average of the 2015 and 2016 curves weighted by the integrated luminosities of the two datasets
Upper limits at 95% CL on the cross-section of the ggF non-resonant SM HH production as a function of κ<sub>λ</sub>. The observed (expected) limits are shown as solid (dashed) lines. In the $b\bar{b}\gamma\gamma$ final state, the observed and expected limits coincide. The $\pm 1 \sigma$ and $\pm 2\sigma$ bands are only shown for the combined expected limit. The theoretical prediction of the cross-section as a function of κ<sub>λ</sub> is also shown.
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 1
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 1
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 1
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 1
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 1
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 1
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 2
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 2
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 2
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 2
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 2
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-2 KK graviton with k/M̄<sub>Pl</sub> = 2
Expected exclusion regions for the EWK-singlet model for tan β = 1. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions for the EWK-singlet model for tan β = 1. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Expected exclusion regions for the EWK-singlet model for tan β = 2. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions for the EWK-singlet model for tan β = 2. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Expected exclusion regions in the EWK-singlet model for m<sub>S</sub>= 260 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions in the EWK-singlet model for m<sub>S</sub>= 260 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Expected exclusion regions in the hMSSM model
Expected exclusion regions (-1 sigma band) in the hMSSM model
Expected exclusion regions (+1 sigma band) in the hMSSM model
Observed exclusion regions in the hMSSM model
Upper limits at 95% CL on the signal cross-section of the ggF non-resonant Higgs boson pair production as a function of κ<sub>λ</sub> with statistical uncertainties only. The limits are shown in dashed lines. The combined limit including all systematic uncertainties is also shown with a solid line.
Expected exclusion regions for the EWK-singlet model with tan β = 5.0. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions for the EWK-singlet model with tan β = 5.0. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Expected exclusion regions for the EWK-singlet model with m<sub>S</sub> = 300 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions for the EWK-singlet model with m<sub>S</sub> = 300 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Expected exclusion regions for the EWK-singlet model with m<sub>S</sub> = 400 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions for the EWK-singlet model with m<sub>S</sub> = 400 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Expected exclusion regions for the EWK-singlet model with m<sub>S</sub> = 500 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
Observed exclusion regions for the EWK-singlet model with m<sub>S</sub> = 500 GeV. The theoretical contour points with width over mass of the resonance equal to 10% are included in the table to identify the experimental-invalid regions.
A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 200 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 1000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 1500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 2000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 2500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 3000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=1g_\textrm{D}$ monopoles of mass 4000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 200 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 1000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 1500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 2000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 2500 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 3000 GeV.
Selection efficiency as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for $g=2g_\textrm{D}$ monopoles of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=60$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 4000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 200 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 1000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 1500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 2000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 2500 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 3000 GeV.
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=100$ of mass 4000 GeV.
The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.
Displaced HNL event selection efficiency as a function of mean proper decay length for HNL mass 5, 7.5, 10 and 12.5 GeV.
Prompt HNL event selection efficiency as a function of mean proper decay length for HNL mass 10 GeV.
Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).
Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNV case).
Prompt HNL search observed and expected 95% confidence level exclusion upper limits in $|U_{e}|^2$ as a function of HNL mass.
Prompt HNL search observed and expected 95% confidence level exclusion upper limits in $|U_{\mu}|^2$ as a function of HNL mass.
Displaced HNL search expected 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).
Displaced HNL search expected 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNV case).
This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a $Z$ boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb$^{-1}$. Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the $Z$ boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underlying-event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.
Figure 09d, mean sumPt toward, toward region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09c, mean sumPt transmin, transmin region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09b, mean nTracks toward, toward region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 09a, mean nTracks transmin, transmin region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 10b, mean meanPt toward, toward region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 10a, mean meanPt transmin, transmin region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04c from auxiliary figures, mean sumPt toward low thrust, toward region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11c, mean sumPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04a from auxiliary figures, mean nTracks toward low thrust, toward region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11a, mean nTracks transmin low thrust, transmin region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06a from auxiliary figures, mean meanPt toward low thrust, toward region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12a, mean meanPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04d from auxiliary figures, mean sumPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11d, mean sumPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04b from auxiliary figures, mean nTracks toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11b, mean nTracks transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06b from auxiliary figures, mean meanPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12b, mean meanPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01a from auxiliary figures, ptSpec toward_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02a from auxiliary figures, ptSpec toward_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04a, ptSpec transmin_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05a, ptSpec transmin_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01b from auxiliary figures, nTracks toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02b from auxiliary figures, nTracks toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04b, nTracks transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05b, nTracks transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01c from auxiliary figures, sumPt toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02c from auxiliary figures, sumPt toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04c, sumPt transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05c, sumPt transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01d from auxiliary figures, meanPt toward_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02d from auxiliary figures, meanPt toward_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04d, meanPt transmin_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05d, meanPt transmin_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03a from auxiliary figures, ptSpec toward_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03c from auxiliary figures, ptSpec toward_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06a, ptSpec transmin_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06c, ptSpec transmin_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05a from auxiliary figures, nTracks toward_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07a, nTracks transmin_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03b from auxiliary figures, ptSpec toward_zptregion2 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03d from auxiliary figures, ptSpec toward_zptregion7 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06b, ptSpec transmin_zptregion2 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06d, ptSpec transmin_zptregion7 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05b from auxiliary figures, nTracks toward_zptregion2 high thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07b, nTracks transmin_zptregion2 high thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$200GeV<p_{T}^{Z}<500GeV$
This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.
Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).
Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).
A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.
Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.
Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.
Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Statistical correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Total correlation between bins in data for the measured fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $m_{e\mu}$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_{T}^{e\mu}$.
Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Statistical correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Total correlation between bins in data for the measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $|y_{e\mu}|$.
Measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Statistical correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Total correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $\Delta\phi_{e\mu}$.
Measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Statistical correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
Total correlation between bins in data for the measured normalized fiducial cross section of $WW\rightarrow e\mu$ production for the observable $|cos(\theta^*)|$.
List of experimentally considered systematic uncertainties for the WW cross section measurement.
Extrapolated unfolded fiducial cross-section of $WW\rightarrow e\mu$ production as a function of $p_\text{T}^{\text{lead }\ell}$.
Extrapolated unfolded fiducial cross-section of $WW\rightarrow e\mu$ production as a function of $m_{e\mu}$.
Extrapolated unfolded fiducial cross-section of $WW\rightarrow e\mu$ production as a function of $p_{T}^{e\mu}$.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.